Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Equipping a construction helmet with a sensor can detect the onset of carbon monoxide poisoning

19.08.2013
Research calling for the use of a wearable computing system installed in a helmet to protect construction workers from carbon monoxide poisoning, a serious lethal threat in this industry, has garnered the Virginia Tech investigators a Best Paper Award from a prestigious scientific and engineering community.

This award will be presented at the August 17-21, 2013 Institute of Electrical and Electronic Engineers (IEEE) Conference on Automation Science and Engineering.


Jason B. Forsyth, right, of Durham, N.C., and a Ph.D. candidate in computer engineering, http://vt.academia.edu/JasonForsyth, places a wearable computing system on a helmet to protect construction workers from carbon monoxide poisoning. The work garnered the Virginia Tech researchers a Best Paper award.

Credit: Virginia Tech

Carbon monoxide poisoning is a significant problem for construction workers in both residential and industrial settings. The danger exists because the exhaust from gasoline-powered hand tools can quickly build up in enclosed spaces and easily overcome the tool's users and nearby co-workers.

In the paper, the researchers explained how they integrated a pulse oximetry sensor into a typical construction helmet to allow continuous and noninvasive monitoring of workers' blood gas saturation levels. The results of their study showed that a user of this helmet would be warned of impending carbon monoxide poisoning with a probability of greater than 99 percent.

The award-winning research and resulting paper was written by Jason B. Forsyth, of Durham, N.C., and a Ph.D. candidate in computer engineering, his adviser Thomas L. Martin, professor of electrical and computer engineering, Deborah Young-Corbett, assistant professor of civil and environmental engineering and a member of the Myers-Lawson School of Construction, and Ed Dorsa, associate professor of industrial design.

The paper, Feasibility of Intelligent Monitoring of Construction Workers for Carbon Monoxide Poisoning," can be found at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6200386. It was the focus of Forsyth's master's thesis, and Martin, Young-Corbett and Dorsa were all members of his graduate committee.

Ten Virginia Tech students participated in the study conducted on the university campus. They mimicked simple tasks of construction workers.

To show the feasibility of monitoring for carbon monoxide poisoning without subjecting the users to dangerous conditions, the researchers used a prototype for monitoring the blood oxygen saturation. The difference for monitoring for oxygen and for carbon monoxide differs only in the number of wavelengths of light employed, so if this monitoring proved feasible, then the monitoring for carbon monoxide would be feasible as well.

They selected a helmet for the installation of a wearable computer because they needed a design that could be worn year round which ruled out seasonal clothing such as overalls or coats. They also wanted a design that was socially acceptable, and one that struck a balance between comfort, usability, and feasibility.

"This helmet is only a first step toward our long-term vision of having a network of wearable and environmental sensors and intelligent personal protective gear on construction sites that will improve safety for workers," according to their report. "While this helmet targets carbon monoxide poisoning, we believe there are compelling opportunities for wearable computing in reducing injuries due to falls, electrocution, and particulate inhalation, as well as workers on foot being struck by vehicles."

Martin is a past recipient of both the Presidential Early Career Award for Scientists and Engineers and the National Science Foundation CAREER Award, both furthering his research in the design of electronic textiles and "smart" clothes.

Young-Corbett is working in a new field of engineering known as Prevention through Design or PtD. This optimal method of preventing occupational illnesses, injuries, and fatalities is to "design out" the hazards and risks; thereby, eliminating the need to control them during work operations. She is also the associate director of the Center for Innovation in Construction Safety and Health Research of the Institute of Critical Technology and Applied Science at Virginia Tech.

Dorsa has a National Science Foundation funded studio in interdisciplinary product development, working with faculty from the College of Engineering and the College of Business' Department of Marketing. In 2005, Design Intelligence chose him as one of the 40 most admired industrial design faculty in the U.S.

Lynn Nystrom | EurekAlert!
Further information:
http://www.vt.edu

More articles from Innovative Products:

nachricht A ski jacket that actively gets rid of sweat
30.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht A fashionable chemical and biological threat detector-on-a-ring
12.10.2017 | American Chemical Society

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>