Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Writing graphics software gets much easier

02.08.2012
A new programming language for image-processing algorithms yields code that’s much shorter and clearer -- but also faster

Image-processing software is a hot commodity: Just look at Instagram, a company built around image processing that Facebook is trying to buy for a billion dollars. Image processing is also going mobile, as more and more people are sending cellphone photos directly to the Web, without transferring them to a computer first.

At the same time, digital-photo files are getting so big that, without a lot of clever software engineering, processing them would take a painfully long time on a desktop computer, let alone a cellphone. Unfortunately, the tricks that engineers use to speed up their image-processing algorithms make their code almost unreadable, and rarely reusable. Adding a new function to an image-processing program, or modifying it to run on a different device, often requires rethinking and revising it from top to bottom.

Researchers at MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) aim to change that, with a new programming language called Halide. Not only are Halide programs easier to read, write and revise than image-processing programs written in a conventional language, but because Halide automates code-optimization procedures that would ordinarily take hours to perform by hand, they're also significantly faster.

In tests, the MIT researchers used Halide to rewrite several common image-processing algorithms whose performance had already been optimized by seasoned programmers. The Halide versions were typically about one-third as long but offered significant performance gains — two-, three-, or even six-fold speedups. In one instance, the Halide program was actually longer than the original — but the speedup was 70-fold.

Jonathan Ragan-Kelley, a graduate student in the Department of Electrical Engineering and Computer Science (EECS), and Andrew Adams, a CSAIL postdoc, led the development of Halide, and they've released the code online. At this month's Siggraph, the premier graphics conference, they'll present a paper on Halide, which they co-wrote with MIT computer science professors Saman Amarasinghe and Fredo Durand and with colleagues at Adobe and Stanford University.

Parallel pipelines

One reason that image processing is so computationally intensive is that it generally requires a succession of discrete operations. After light strikes the sensor in a cellphone camera, the phone combs through the image data for values that indicate malfunctioning sensor pixels and corrects them. Then it correlates the readings from pixels sensitive to different colors to deduce the actual colors of image regions. Then it does some color correction, and then some contrast adjustment, to make the image colors better correspond to what the human eye sees. At this point, the phone has done so much processing that it takes another pass through the data to clean it up.

And that's just to display the image on the phone screen. Software that does anything more complicated, like removing red eye, or softening shadows, or boosting color saturation — or making the image look like an old Polaroid photo — introduces still more layers of processing. Moreover, high-level modifications often require the software to go back and recompute prior stages in the pipeline.

In today's multicore chips, distributing different segments of the image to cores working in parallel can make image processing more efficient. But the way parallel processing is usually done, after each step in the image-processing pipeline, the cores would send the results of their computations back to main memory. Because data transfer is much slower than computation, this can eat up all the performance gains offered by parallelization.

So software engineers try to keep the individual cores busy for as long as possible before they have to ship their results to memory. That means that the cores have to execute several steps in the processing pipeline on their separate chunks of data without aggregating their results. Keeping track of all the dependencies between pixels being processed on separate cores is what makes the code for efficient image processors so complicated. Moreover, the trade-offs between the number of cores, the processing power of the cores, the amount of local memory available to each core, and the time it takes to move data off-core varies from machine to machine, so a program optimized for one device may offer no speed advantages on a different one.

Divide and conquer

Halide doesn't spare the programmer from thinking about how to parallelize efficiently on particular machines, but it splits that problem off from the description of the image-processing algorithms. A Halide program has two sections: one for the algorithms, and one for the processing "schedule." The schedule can specify the size and shape of the image chunks that each core needs to process at each step in the pipeline, and it can specify data dependencies — for instance, that steps being executed on particular cores will need access to the results of previous steps on different cores. Once the schedule is drawn up, however, Halide handles all the accounting automatically.

A programmer who wants to export a program to a different machine just changes the schedule, not the algorithm description. A programmer who wants to add a new processing step to the pipeline just plugs in a description of the new procedure, without having to modify the existing ones. (A new step in the pipeline will require a corresponding specification in the schedule, however.)

"When you have the idea that you might want to parallelize something a certain way or use stages a certain way, when writing that manually, it's really hard to express that idea correctly," Ragan-Kelley says. "If you have a new optimization idea that you want to apply, chances are you're going to spend three days debugging it because you've broken it in the process. With this, you change one line that expresses that idea, and it synthesizes the correct thing."

Although Halide programs are simpler to write and to read than ordinary image-processing programs, because the scheduling is handled automatically, they still frequently offer performance gains over even the most carefully hand-engineered code. Moreover, Halide code is so easy to modify that programmers could simply experiment with half-baked ideas to see if they improve performance.

"You can just flail around and try different things at random, and you'll often find something really good," Adams says. "Only much later, when you've thought about it very hard, will you figure out why it's good."

Kimberly Allen | EurekAlert!
Further information:
http://www.mit.edu

More articles from Information Technology:

nachricht 5G is smartening up production
23.08.2019 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Software for diagnostics and fail-safe operation of robots developed at FEFU
23.08.2019 | Far Eastern Federal University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>