Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using existing cellular networks for drones

10.09.2019

It might soon become common for drones to transport goods and people, monitor disaster zones, and bring various forms of relief to areas that are difficult to access. Which communication infrastructure is best suited to facilitate this? Researchers at the University of Klagenfurt have explored potential challenges associated with the use of traditional cellular networks.

The communicative challenges facing drones are manifold: They need to communicate with a base station on the ground, but they must also be able to swap information with each other. This requires a pervasive wireless communication infrastructure, which traditional cellular networks are equipped to provide.


Aymen Fakhreddine

aau/Müller

Aymen Fakhreddine, a senior researcher in the research group established by Christian Bettstetter at the Department of Networked and Embedded Systems, recently presented results from his research into how this utilisation might be realised at the ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications in Seoul.

In order to address this question, the study focused on the use of drones in the LTE advanced network. The outcome: The transmission rates (20 Mbit/sec from the base station to the drone) are already adequate for numerous applications.

Nonetheless, it will be necessary to continuously improve the performance in order to broaden the set of functionalities. Researchers believe that the 5G network, currently still under construction or at the initial operating phase, carries great promise.

“At the moment, researchers have insufficient knowledge about the drone communication in real cellular networks”, Aymen Fakhreddine explains. Originally from Casablanca (Morocco), he studied in Madrid and Paris and has worked as a researcher in Singapore and Madrid.

The research currently being conducted at the University of Klagenfurt and the Lakeside Labs GmbH is realised in cooperation with MAGENTA (formerly: T-Mobile) and allows for experimental studies in real cellular networks. The mobile telephony operator supports the researchers by providing infrastructure and data from the mobile network.

In answer to the question whether a separate communication network could be built specifically for drones in the near future, Fakhreddine responds as follows:

“A brand new network represents significant costs. I believe that mobile operators will integrate drones into their existing infrastructure during the next five to ten years, before we can talk about the need/feasibility of a dedicated infrastructure.”

For now, the focus is on preparing the drones for integration in a 5G network, which also includes dealing with the issue of standardisation.

Wissenschaftliche Ansprechpartner:

Aymen Fakhreddine, PhD.
+43 463 2700 3659
Aymen.Fakhreddine@aau.at

Originalpublikation:

Aymen Fakhreddine, Christian Bettstetter, Samira Hayat, Raheeb Muzaffar, and Driton Emini. Handover Challenges for Cellular-Connected Drones. In Proc. ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications (DroNet), Seoul, Korea, June 21, 2019, https://doi.org/10.1145/3325421.3329770.

Dr. Romy Müller | idw - Informationsdienst Wissenschaft
Further information:
http://www.aau.at

More articles from Information Technology:

nachricht Predictive touch response mechanism is a step toward a tactile internet
24.01.2020 | The Optical Society

nachricht The easy route the easy way: New chip calculates the shortest distance in an instant
23.01.2020 | Tokyo University of Science

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>