Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better turbine simulation software to yield better engines

21.12.2011
Chen leverages Ohio Supercomputer Center resources to refine TURBO

For most of us, the word "turbomachinery" may conjure up images of superheroes or fast exotic cars, but in reality most people leverage turbomachinery to get things done nearly every day.


The research team of Jen-Ping Chen, Ph.D., associate professor of mechanical and aerospace engineering at the Ohio State University, used Ohio Supercomputer Center resources to create TURBO simulations for the flow field in an unducted counter-rotating fan. Credit: Chen/OSU


Simulations of pulsing vortex generating jets, a type of flow control device, created on Ohio Supercomputer Center systems by the research team of Jen-Ping Chen, Ph.D., an associate professor of mechanical and aerospace engineering at the Ohio State University. Vorticity iso-surfaces are colored by velocity magnitude. Credit: Chen/OSU

Turbomachinery – pumps, fans, compressors, turbines and other machines that transfer energy between a rotor and a fluid – is especially instrumental in power generation in the aeronautic, automotive, marine, space and industrial sectors. For engine designers to achieve the most efficient propulsion and power systems, they must understand the physics of very complex air-flow fields produced within multiple stages of constantly rotating rotors and stators.

Jen-Ping Chen, Ph.D., an associate professor of mechanical and aerospace engineering at The Ohio State University, is working to improve the computational fluid dynamics (CFD) software that engineers use to simulate and evaluate the operation of turbomachinery. Chen was the chief architect of that type of computer code, appropriately named TURBO, which he developed earlier for NASA.

Chen is leveraging the computational power of the Ohio Supercomputer Center to refine the software as it validates the flow field of engine components, specifically as it applies to high-pressure compressors and low-pressure turbines.

"The world is demanding increasingly cleaner, more efficient and reliable power systems," noted Ashok Krishnamurthy, interim co-executive director of OSC. "Therefore, it is essential that experts like Dr. Chen find innovative ways to improve the tools the engineers need to accomplish that goal, and we at OSC are proud to be able to provide the computational resources that make that effort successful."

Each turbomachinery component has unique physical characteristics that present difficulties in design and operation, such as stall in a compressor and cooling in a high-pressure turbine. With a simulation tool that is validated and optimized to run efficiently on a large computer cluster, engine designers will have more physical insight to the complex flow field, which will lead to reduced testing, reduced risk, faster time-to-market and lower costs.

While traditional wind-tunnel testing is often the most straightforward approach, it also comes with high costs and severe constraints on placing the measurement probes, according to Chen. Numerical simulation, using CFD, has provided an alternative for studying such flows at a lower cost and with unconstrained probe placement. Yet, the accuracy of a simulation depends on the accuracy of the mathematical model behind the simulation.

"Our goal is to develop a reliable prediction technology to help improve turbomachinery component design," said Chen. "The successful combination of CFD simulation and experimentation can greatly supplement the understanding of fundamental fluid behavior of gas turbine systems, thus enhancing the ability of engineers to develop more advanced engine components."

Chen's team is investigating three specific areas of current industrial interest: coupled fluid-structure interaction, active flow control and turbine film cooling. Improved numerical simulation will allow engineers to analyze complex flow fields and aeroelastic phenomena, such as flutter, limit-cycle oscillations, forced response, nonsynchronous vibrations and separated-flow vibrations, which arise from fluid-structure interaction.

Application of a newly developed flow control simulation model for vortex-generating jets in low-pressure turbines will help improve engineers' understanding of how flow control can be used to increase the performance and operability of gas turbine engines. And, finally, simulations can help engineers accurately predict the effectiveness of film cooling on heat transfer in a three-dimensional, unsteady, rotating environment with actual engine geometry.

Chen earned his doctorate and master's degree in aerospace engineering from Mississippi State University in 1991 and 1987, respectively, and his bachelor's degree in industrial engineering from Tunghai University in 1980. This study, "Numerical investigations of rotating components in air-breathing propulsion systems," is funded through the Air Force Office of Scientific Research and N&R Engineering.

Mr. Jamie Abel | EurekAlert!
Further information:
http://www.osc.edu

More articles from Information Technology:

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht A burst of ”synchronous” light
08.11.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>