Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time recording up one's sleeve

02.01.2012
Optimized operations are essential to globally competitive companies. Until now, inspectors have timed procedures, usually manually, in order to organize manual assembly operations efficiently – a method prone to error. A new system records times automatically and cuts costs for companies.

Handling tools, assembling , inserting, joining and bolting parts, painting components, operating equipment – innumerable procedures must be executed before a product can be packaged and shipped. How much time do employees need for individual procedures? How long does manual assembly take?

Industrial manufacturers have to analyze and optimize their employees’ operations continually in order to remain competitive. They must record the times of operations if they wish to analyze the individual procedures. This enables them to identify long handling distances, impractically located components, overly frequent tool changes or irregular and superfluous movements, which waste time and make production processes inefficient.

Until now, every individual movement has usually been timed by someone with a stopwatch or with digital time boards manned by employees. This approach is not really objective, however. It is replete with errors and disadvantageous for everyone involved: The stress factor for employees is extremely high and they might not execute their jobs at their usual speed. For companies, this requires quite a lot of work from staff and thus incurs high costs. There is therefore great need for more precise, automated and cost effective solutions. Contracted by the engineering firm DR. GRUENDLER® in Magdeburg, researchers at the Fraunhofer Institute for Factory Operation and Automation IFF have developed such a system.

Three matchbox-sized sensors integrated in a sleeve record hand and arm movements precisely and measure the start and end of individual actions, e.g. reaching, grasping, setting up, joining, checking or releasing. The interlinked sensor modules are positioned on the upper and lower arm and the hand. Employees merely have to put on the two sleeves. They are snug like a second skin yet comfortable and do not impede the wearer. “The present stopwatch method only allows a process organizer to time five individuals simultaneously, depending on the situation. Our solution makes it possible to record time simultaneously, even at several workplaces, without requiring additional labor. The system’s greater precision and objectivity is crucial,” says Martin Woitag, research manager at the Fraunhofer IFF. Woitag and his team relied on inertial sensors for their solution. They measure the acceleration and angular velocities of arms and hands in the X, Y and Z axes. Unlike other motion tracking systems, such as GPS, the inertial measurement system functions without any other infrastructure. The inertial sensors independently detect objects’ positions in space. “What is more, our solution doesn’t require complex calibration. A tool that teaches in the measuring points directly at the assembly workplace one time is all that is needed,” according to Woitag. A PC application completes the system. The software calculates and reconstructs the motion sequences based on the sensor data. It breaks processes down into motion segments and ascertains the related times.

At present, the sleeves can be used for assembly jobs at sitting workplaces in logistics and manufacturing. In the next stage, the researchers in Magdeburg intend to configure the system to also analyze assembly operations during which workers stand or move around. They additionally plan to use the sensors to detect posture and thus analyze workplace ergonomics.

Martin Woitag | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/january/time-recording.html

More articles from Information Technology:

nachricht Researchers move closer to completely optical artificial neural network
23.07.2018 | The Optical Society

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>