Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switchable adhesion principle enables damage-free handling of sensitive devices even in vacuum

10.06.2014

Components with highly sensitive surfaces are used in automotive, semiconductor and display technologies as well as for complex optical lens systems.

During the production process, these parts are transferred in between many process steps. Each pick-up and release with conventional gripping systems involves the risk of either contamination of the surfaces with residues from transportation adhesives, or damaging due to mechanical gripping.


Gecomer© technology at the INM

Source: Uwe Bellhäuser, only free within this press release


Gecobot 2.0

Source: Uwe Bellhäuser, only free within this press release

Suction cup systems diminish residues, but fail in a vacuum or on rough surfaces. Researchers at the Leibniz Institute for New Materials (INM) enhanced the Gecko adhesion principle that adhesion can be switched on and off in vacuum.

With the “gecobot 2.0”, the researchers from the INM will be presenting their new Gecomer® technology at the International Innovation Conference and Expo TechConnect World from June 16 to 17, Washington DC, USA, at Stand 301in the German Area.

"Artificially produced microscopic pillars, so-called gecko structures, adhere to various items. By bending these pillars, the adhesion can be switched off. Thus, items can be lifted and quickly released," explains Karsten Moh from the Program Division Functional Microstructures.

"This technique is particularly interesting in vacuum, as suction cups fail here," says Moh. Parts, for example, can be moved within a reactor chamber for vapor phase deposition (CVD or PVD). With the currently developed adhesion system, objects with smooth surfaces can be lifted and released, having a weight of approximately 100 grams per square centimeter (ca.0.03 lbs per square inch)."

In our test runs, the system has proved successful even after 20,000 runs", says the upscaling expert Moh.

The development group is now working on the gripping of more complicated objects without leaving residues using this adhesion principle. "Then, we could also move glass lenses or automobile bumpers without damaging them in the production process," says Moh.

From June 16 to 17, the researchers of the INM present this and further results at Stand 301 in the German Area. This includes new developments in the field of display techniques, printed electronics, corrosion protection, antifouling and antifriction.

Your expert at the Stand:
Joachim Blau
Dr. Karsten Moh

Your expert at the INM:
Prof. Eduard Arzt
INM – Leibniz Institute for New Materials
Head Functional Microstructures
Phone: +49681-9300-500
eduard.arzt@inm-gmbh.de

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological applications and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbruecken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 195 employees.

Weitere Informationen:

http://www.inm-gmbh.de/en

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Further reports about: Division INM Interface Leibniz-Institut Technology adhesion reactor smooth structures surfaces vacuum

More articles from Information Technology:

nachricht First machine learning method capable of accurate extrapolation
13.07.2018 | Institute of Science and Technology Austria

nachricht A step closer to single-atom data storage
13.07.2018 | Ecole Polytechnique Fédérale de Lausanne

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>