Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists invent new way to control light, critical for next gen of super fast computing

20.03.2015

A device resembling a plastic honeycomb yet infinitely smaller than a bee's stinger can steer light beams around tighter curves than ever before possible, while keeping the integrity and intensity of the beam intact.

The work, conducted by researchers at the University of Texas El Paso (UTEP) and at the University of Central Florida (UCF) and published in the journal Optics Express, introduces a more effective way to transmit data rapidly on electronic circuit boards by using light.


UCF's team works in the lab.

Credit: UCF

Sending information on light beams, instead of electrical signals, allows data to be transmitted thousands of times more quickly. But controlling the light beams without losing their energy has been the challenge. Microchip and computer manufacturers however, are increasingly looking to light as the best way to overcome speed bottlenecks associated with today's electronics.

"Computer chips and circuit boards have metal wire connections within them that transport data signals," said Raymond Rumpf, professor of electrical and computer engineering at UTEP. "One of challenges when using light is figuring out a way to make tight bends so we can replace the metal wiring more effectively."

That's where UCF comes in.

"Direct laser writing has the potential to become a flexible means for manufacturing next-generation computer devices," said Stephen Kuebler, associate professor of chemistry at UCF.

Kuebler and his students used direct laser writing, a kind of nanoscale 3D printing, to create the miniature lattices. The team then ran light beams through the lattices and confirmed that they could flow light without loss through turns that are twice as tight as any done previously.

The finding is significant because with the demand for ever-smaller and faster computers and hand-held devices, engineers need ways to pack ultra-fast data-transmission devices into smaller spaces.

Conventional light waveguides, like optical fibers, can be used to steer light through turns. But the turns must be gradual. If the turn is too quick, the light beams escape and energy is lost.

To make ultra-sharp turns, the team designed the plastic devices so that its lattice steers the beam around corners without losing energy.

The UTEP-UCF team's technology creates a new record in the field of optics for its ability to bend light beams. Kuebler said the team is now working to double that record, creating a lattice that will turn the light through an even tighter turn.

Rumpf, who runs UTEP's Electromagnetic Lab, envisions this groundbreaking technology will first appear in high-performance super computers before it can be found in people's everyday laptops.

###

Kuebler earned the Ph.D. in chemistry from the University of Oxford. He joined UCF in 2003 through an appointment in Chemistry and CREOL, The College of Optics & Photonics. His research has been continuously funded by the National Science Foundation (NSF) and industry. In 2007 he received the NSF CAREER Award. His teaching has been recognized with Teaching Incentive Program awards (2008, 2014) and Excellence in Undergraduate Teaching awards (2008, 2015) from the UCF College of Sciences.

Media Contact

Zenaida Gonzalez Kotala
zenaida.kotala@ucf.edu
407-823-6120

http://www.ucf.edu 

Zenaida Gonzalez Kotala | EurekAlert!

More articles from Information Technology:

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>