Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots with insect brains

03.02.2014
Berlin researchers develop a robot that can learn to navigate through its environment guided by external stimuli. It operating principles? The brain of insects.

Autonomous robots that find their way through unfamiliar terrain? Not so distant future.


The robot in the arena. The small camera films the objects and passes the information to the neural network by wifi. The network processes the data and controls the movement direction of the robot.

Martin Paul Nawrot

Researchers at the Bernstein Fokus Neuronal Basis of Learning, the Bernstein Center Berlin and the Freie Universität Berlin have developed a robot that perceives environmental stimuli and learns to react to them.

The scientists used the relatively simple nervous system of the honeybee as a model for its working principles. To this end, they installed a camera on a small robotic vehicle and connected it to a computer. The computer program replicated in a simplified way the sensorimotor network of the insect brain.

The input data came from the camera that—akin to an eye—received and projected visual information. The neural network, in turn, operated the motors of the robot wheels—and could thus control its motion direction.

The outstanding feature of this artifical mini brain is its ability to learn by simple principles. “The network-controlled robot is able to link certain external stimuli with behavioral rules,” says Professor Martin Paul Nawrot, head of the research team and member of the sub-project „Insect inspired robots: towards an understanding of memory in decision making“ of the Bernstein Focus. “Much like honeybees learn to associate certain flower colors with tasty nectar, the robot learns to approach certain colored objects and to avoid others.”

In the learning experiment, the scientists located the network-controlled robot in the center of a small arena. Red and blue objects were installed on the walls. Once the robot’s camera focused on an object with the desired color—red, for instance—, the scientists triggered a light flash. This signal activated a so-called reward sensor nerve cell in the artificial network. The simultaneous processing of red color and the reward now led to specific changes in those parts of the network, which exercised control over the robot wheels. As a consequence, when the robot “saw” another red object, it started to move toward it. Blue items, in contrast, made it to move backwards. “Just within seconds, the robot accomplishes the task to find an object in the desired color and to approach it,” explains Nawrot. “Only a single learning trial is needed, similar to experimental observations in honeybees.”

The current study has been carried out within an interdisciplinary collaboration between Professor Martin Paul Nawot’s research group “Neuroinformatics” (Institut of Biology), and the group “Intelligent Systems and Robotics” (Institute of Computer Science) headed by Raúl Rojas at Freie Universität Berlin. The scientists are now planning to expand their neural network by supplementing more learning principles. Thus, the mini brain will become even more powerful—and the robot more autonomous.

The Bernstein Focus Neuronal Basis of Learning, sub-project “Insect inspired robots: towards an understanding of memory in decision making” and the Bernstein Center Berlin are part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with more than 170 million Euros. The network is named after the German physiologist Julius Bernstein (1835–1917).

Contact:
Prof. Dr. Martin Paul Nawrot
Freie Universität Berlin
Institute of Biology – Neurobiology
Königin-Luise-Straße 1-3, room 201
14195 Berlin 

Tel: +49 (0)30 838 56692
Email: martin.nawrot@fu-berlin.de
Original publication:
L. I. Helgadóttir, J. Haenicke, T. Landgraf, R. Rojas & M. P. Nawrot (2013): Conditioned behavior in a robot controlled by a spiking neural network. 6th International IEEE/EMBS Conference on Neural Engineering (NER), 891 - 894

http://dx.doi.org/10.1109/NER.2013.6696078

Video:
http://www.youtube.com/watch?v=Qb_R_E4DPYs&feature=youtu.be
Weitere Informationen:
http://www.biologie.fu-berlin.de/neuroinformatik/ Research group „Neuroinformatics“ headed by Martin Paul Nawrot
http://www.inf.fu-berlin.de/inst/ag-ki/rojas_home/pmwiki/pmwiki.php Research group „Intelligent Systems and Robotics“ headed by Raúl Rojas
https://www.bccn-berlin.de Bernstein Center Berlin
http://www.fu-berlin.de Freie Universität Berlin
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw
Further information:
http://www.nncn.de

More articles from Information Technology:

nachricht Researchers build transistor-like gate for quantum information processing -- with qudits
17.07.2019 | Purdue University

nachricht New DFG Research Group "Metrology for THz Communications"
17.07.2019 | Technische Universität Braunschweig

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

Better thermal conductivity by adjusting the arrangement of atoms

19.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>