Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers take a step towards light-based, brain-like computing chip

09.05.2019

Researchers from the Universities of Münster (Germany), Oxford and Exeter (both UK) have succeeded in developing a piece of hardware which could pave the way for creating computers which resemble the human brain. The scientists produced a chip containing a network of artificial neurons that works with light and can imitate the behaviour of neurons and their synapses. The network is able to “learn” information and use this as a basis for computing and recognizing patterns. As the system functions solely with light and not with electrons, it can process data many times faster than traditional systems. The study is published in “Nature”.

A technology that functions like a brain? In these times of artificial intelligence, this no longer seems so far-fetched - for example, when a mobile phone can recognise faces or languages. With more complex applications, however, computers still quickly come up against their own limitations.


Schematic illustration of a light-based, brain-inspired chip. The chip contains an artificial network of neurons and synapses that works with light.

Johannes Feldmann


The optical microchips that the researchers are working on developing are about the size of a one-cent piece.

WWU Muenster - Peter Leßmann

One of the reasons for this is that a computer traditionally has separate memory and processor units - the consequence of which is that all data have to be sent back and forth between the two.

In this respect, the human brain is way ahead of even the most modern computers because it processes and stores information in the same place - in the synapses, or connections between neurons, of which there are a million-billion in the brain.

An international team of researchers from the Universities of Münster (Germany), Oxford and Exeter (both UK) have now succeeded in developing a piece of hardware which could pave the way for creating computers which resemble the human brain. The scientists managed to produce a chip containing a network of artificial neurons that works with light and can imitate the behaviour of neurons and their synapses.

The researchers were able to demonstrate, that such an optical neurosynaptic network is able to "learn" information and use this as a basis for computing and recognizing patterns - just as a brain can. As the system functions solely with light and not with traditional electrons, it can process data many times faster.

"This integrated photonic system is an experimental milestone," says Prof. Wolfram Pernice from Münster University and lead partner in the study. "The approach could be used later in many different fields for evaluating patterns in large quantities of data, for example in medical diagnoses." The study is published in the latest issue of the "Nature" journal.

The story in detail - background and method used

Most of the existing approaches relating to so-called neuromorphic networks are based on electronics, whereas optical systems - in which photons, i.e. light particles, are used - are still in their infancy. The principle which the German and British scientists have now presented works as follows: optical waveguides that can transmit light and can be fabricated into optical microchips are integrated with so-called phase-change materials - which are already found today on storage media such as re-writable DVDs.

These phase-change materials are characterised by the fact that they change their optical properties dramatically, depending on whether they are crystalline - when their atoms arrange themselves in a regular fashion - or amorphous - when their atoms organise themselves in an irregular fashion.

This phase-change can be triggered by light if a laser heats the material up. "Because the material reacts so strongly, and changes its properties dramatically, it is highly suitable for imitating synapses and the transfer of impulses between two neurons," says lead author Johannes Feldmann, who carried out many of the experiments as part of his PhD thesis at the Münster University.

In their study, the scientists succeeded for the first time in merging many nanostructured phase-change materials into one neurosynaptic network. The researchers developed a chip with four artificial neurons and a total of 60 synapses. The structure of the chip - consisting of different layers - was based on the so-called wavelength division multiplex technology, which is a process in which light is transmitted on different channels within the optical nanocircuit.

In order to test the extent to which the system is able to recognise patterns, the researchers "fed" it with information in the form of light pulses, using two different algorithms of machine learning. In this process, an artificial system "learns" from examples and can, ultimately, generalise them.

In the case of the two algorithms used - both in so-called supervised and in unsupervised learning - the artificial network was ultimately able, on the basis of given light patterns, to recognise a pattern being sought - one of which was four consecutive letters.

"Our system has enabled us to take an important step towards creating computer hardware which behaves similarly to neurons and synapses in the brain and which is also able to work on real-world tasks," says Wolfram Pernice.

"By working with photons instead of electrons we can exploit to the full the known potential of optical technologies - not only in order to transfer data, as has been the case so far, but also in order to process and store them in one place," adds co-author Prof. Harish Bhaskaran from the University of Oxford.

A very specific example is that with the aid of such hardware cancer cells could be identified automatically. Further work will need to be done, however, before such applications become reality. The researchers need to increase the number of artificial neurons and synapses and increase the depth of neural networks.

This can be done, for example, with optical chips manufactured using silicon technology. "This step is to be taken in the EU joint project 'Fun-COMP' by using foundry processing for the production of nanochips," says co-author and leader of the Fun-COMP project, Prof. C. David Wright from the University of Exeter.

Funding:

This collaborative work was funded by Germany’s DFG (grant PE 1832/5-1), the UK’s EPSRC (grants EP/J018694/1, EP/M015173/1 and EP/M015130/1) and the European Commission’s ERC (grant 724707) and H2020 (the Fun-COMP project, grant 780848) programmes.

Wissenschaftliche Ansprechpartner:

Prof. Wolfram Pernice
Westfälische Wilhelms-Universität Münster (WWU)
Tel: 0251 83 63957
wolfram.pernice@uni-muenster.de

Originalpublikation:

Original publication:
J. Feldmann et al. (2019): All-optical spiking neurosynaptic networks with self-learning capabilities. Nature; DOI: 10.1038/s41586-019-1157-8

Weitere Informationen:

https://www.uni-muenster.de/Physik.PI/Pernice/index.html Research Group Pernice at Münster University

https://www.uni-muenster.de/forschung/en/profil/schwerpunkt/nanowissenschaften.h... Core profile area "Nanosciences" at Münster University

Svenja Ronge | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips
15.11.2019 | National Institute of Standards and Technology (NIST)

nachricht Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)
14.11.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Volcanoes under pressure

18.11.2019 | Earth Sciences

Scientists discover how the molecule-sorting station in our cells is formed and maintained

18.11.2019 | Life Sciences

Hot electrons harvested without tricks

18.11.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>