Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers take a step towards light-based, brain-like computing chip

09.05.2019

Researchers from the Universities of Münster (Germany), Oxford and Exeter (both UK) have succeeded in developing a piece of hardware which could pave the way for creating computers which resemble the human brain. The scientists produced a chip containing a network of artificial neurons that works with light and can imitate the behaviour of neurons and their synapses. The network is able to “learn” information and use this as a basis for computing and recognizing patterns. As the system functions solely with light and not with electrons, it can process data many times faster than traditional systems. The study is published in “Nature”.

A technology that functions like a brain? In these times of artificial intelligence, this no longer seems so far-fetched - for example, when a mobile phone can recognise faces or languages. With more complex applications, however, computers still quickly come up against their own limitations.


Schematic illustration of a light-based, brain-inspired chip. The chip contains an artificial network of neurons and synapses that works with light.

Johannes Feldmann


The optical microchips that the researchers are working on developing are about the size of a one-cent piece.

WWU Muenster - Peter Leßmann

One of the reasons for this is that a computer traditionally has separate memory and processor units - the consequence of which is that all data have to be sent back and forth between the two.

In this respect, the human brain is way ahead of even the most modern computers because it processes and stores information in the same place - in the synapses, or connections between neurons, of which there are a million-billion in the brain.

An international team of researchers from the Universities of Münster (Germany), Oxford and Exeter (both UK) have now succeeded in developing a piece of hardware which could pave the way for creating computers which resemble the human brain. The scientists managed to produce a chip containing a network of artificial neurons that works with light and can imitate the behaviour of neurons and their synapses.

The researchers were able to demonstrate, that such an optical neurosynaptic network is able to "learn" information and use this as a basis for computing and recognizing patterns - just as a brain can. As the system functions solely with light and not with traditional electrons, it can process data many times faster.

"This integrated photonic system is an experimental milestone," says Prof. Wolfram Pernice from Münster University and lead partner in the study. "The approach could be used later in many different fields for evaluating patterns in large quantities of data, for example in medical diagnoses." The study is published in the latest issue of the "Nature" journal.

The story in detail - background and method used

Most of the existing approaches relating to so-called neuromorphic networks are based on electronics, whereas optical systems - in which photons, i.e. light particles, are used - are still in their infancy. The principle which the German and British scientists have now presented works as follows: optical waveguides that can transmit light and can be fabricated into optical microchips are integrated with so-called phase-change materials - which are already found today on storage media such as re-writable DVDs.

These phase-change materials are characterised by the fact that they change their optical properties dramatically, depending on whether they are crystalline - when their atoms arrange themselves in a regular fashion - or amorphous - when their atoms organise themselves in an irregular fashion.

This phase-change can be triggered by light if a laser heats the material up. "Because the material reacts so strongly, and changes its properties dramatically, it is highly suitable for imitating synapses and the transfer of impulses between two neurons," says lead author Johannes Feldmann, who carried out many of the experiments as part of his PhD thesis at the Münster University.

In their study, the scientists succeeded for the first time in merging many nanostructured phase-change materials into one neurosynaptic network. The researchers developed a chip with four artificial neurons and a total of 60 synapses. The structure of the chip - consisting of different layers - was based on the so-called wavelength division multiplex technology, which is a process in which light is transmitted on different channels within the optical nanocircuit.

In order to test the extent to which the system is able to recognise patterns, the researchers "fed" it with information in the form of light pulses, using two different algorithms of machine learning. In this process, an artificial system "learns" from examples and can, ultimately, generalise them.

In the case of the two algorithms used - both in so-called supervised and in unsupervised learning - the artificial network was ultimately able, on the basis of given light patterns, to recognise a pattern being sought - one of which was four consecutive letters.

"Our system has enabled us to take an important step towards creating computer hardware which behaves similarly to neurons and synapses in the brain and which is also able to work on real-world tasks," says Wolfram Pernice.

"By working with photons instead of electrons we can exploit to the full the known potential of optical technologies - not only in order to transfer data, as has been the case so far, but also in order to process and store them in one place," adds co-author Prof. Harish Bhaskaran from the University of Oxford.

A very specific example is that with the aid of such hardware cancer cells could be identified automatically. Further work will need to be done, however, before such applications become reality. The researchers need to increase the number of artificial neurons and synapses and increase the depth of neural networks.

This can be done, for example, with optical chips manufactured using silicon technology. "This step is to be taken in the EU joint project 'Fun-COMP' by using foundry processing for the production of nanochips," says co-author and leader of the Fun-COMP project, Prof. C. David Wright from the University of Exeter.

Funding:

This collaborative work was funded by Germany’s DFG (grant PE 1832/5-1), the UK’s EPSRC (grants EP/J018694/1, EP/M015173/1 and EP/M015130/1) and the European Commission’s ERC (grant 724707) and H2020 (the Fun-COMP project, grant 780848) programmes.

Wissenschaftliche Ansprechpartner:

Prof. Wolfram Pernice
Westfälische Wilhelms-Universität Münster (WWU)
Tel: 0251 83 63957
wolfram.pernice@uni-muenster.de

Originalpublikation:

Original publication:
J. Feldmann et al. (2019): All-optical spiking neurosynaptic networks with self-learning capabilities. Nature; DOI: 10.1038/s41586-019-1157-8

Weitere Informationen:

https://www.uni-muenster.de/Physik.PI/Pernice/index.html Research Group Pernice at Münster University

https://www.uni-muenster.de/forschung/en/profil/schwerpunkt/nanowissenschaften.h... Core profile area "Nanosciences" at Münster University

Svenja Ronge | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Researchers build transistor-like gate for quantum information processing -- with qudits
17.07.2019 | Purdue University

nachricht New DFG Research Group "Metrology for THz Communications"
17.07.2019 | Technische Universität Braunschweig

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>