Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop fail-safe techniques for erasing magnetic storage media

14.06.2006
Protecting sensitive data
After a U.S. intelligence-gathering aircraft was involved in a mid-air collision off the coast of China four years ago, the crew was unable to erase sensitive information from magnetic data storage systems before making an emergency landing in Chinese territory.

That event underscored the need for simple techniques to provide fail-safe destruction of sensitive data aboard such aircraft. Working with defense contractor L-3 Communications Corp., scientists at the Georgia Tech Research Institute (GTRI) have developed a series of prototype systems that use special high-strength permanent magnets to quickly erase a wide variety of storage media.

Developed so far for VHS tapes, floppy drives, data cassettes, and small computer hard drives, the techniques could also have commercial applications for banking, human resource and other industries that must also protect sensitive information.

"This is a very challenging problem," said Michael Knotts, a research scientist in the GTRI's Signature Technology Laboratory. "We had to verify that the data would be beyond all possible recovery even with unlimited budget and unlimited time. Commercial devices on the market for data erasure just couldn't fill the bill, because they were magnetically too weak, they were physically too large and heavy, or they didn't meet stringent air safety standards."

During the project, the researchers developed testing procedures that use a magnetic force microscope (MFM) – a variation on the atomic-force microscope (AFM) more commonly used to provide detailed images of surfaces at the nanometer scale. The MFM mapped the very small magnetic perturbations created by data stored on the media, helping determine how well data patterns had been destroyed.

"If you erase the data by whatever means, you should see a surface devoid of any specific pattern or periodicity," Knotts explained. "Our goal was to see a random distribution of magnetization that would indicate a clean disk."

During the three-year project, Knotts and collaborators Don Creyts, Dave Maybury, Candy Ekangaki, and Tedd Toler explored a broad range of possible destruction techniques, including burning diskettes with heat-generating thermite materials, crushing drives in presses and chemically destroying the media.

The researchers had to select techniques and equipment that would:

  • Be light enough for aircraft use and operate independently of aircraft electrical systems;
  • Be mechanically simple to ensure reliable operation;
  • Produce no harmful gases or flame;
  • Provide mechanisms to prevent inadvertent erasure.

During their first year of work, the researchers learned that data could remain on diskettes that had been subjected to high heat, and had to abandon thermal destruction techniques because of the fire and harmful gases they generated. That left only magnetic techniques.

In developing techniques for complete erasure, the researchers first had to learn how different data storage drives operate, then assess the magnetic field levels necessary for complete erasure. To do that, they obtained a number of commercially-available micro-drives, cut the media into sections, subjected them to varying magnetic fields, and then tested the sections with the MFM.

"We had to understand how the data is laid out on the disk so we could know where to look for the patterns, and we had to do a lot of measurements to determine exactly what kind of magnetic field is needed to destroy all data," said Knotts. "We had to do a lot of destructive testing to determine that, and our lab is littered with the carcasses of dead hard drives to prove it."

Producing a magnetic field sufficient to destroy data patterns required the use of neodymium iron-boron magnets custom-designed for the project and special pole pieces made of esoteric cobalt alloys. The magnets, which weigh as much as 125 pounds, had to produce fields sufficient to penetrate metallic housings that surround some drives.

"We developed models for magnetic circuits that we could run through optimization codes to design the best shape to get the field that we needed," Knotts said. "It takes quite a magnetic field to get through the steel enclosures on some of the drives. We are producing magnetic fields comparable to those used in magnetic resonance imaging equipment, so these are not your ordinary refrigerator magnets."

Mechanically, the researchers faced challenges in reliably moving data storage devices through the magnetic fields. In some cases, aircraft crews would simply insert removable media into a motorized mechanism that pushes them past the magnets, while for other media, crews would have to twist a knob and pull drives out of their enclosures and through a magnetic field. To prevent accidental erasure, each technique requires several deliberate steps.

With success in erasing removable media and small hard drives, the researchers are moving onto a final phase of the project, which will involve large computer hard drives partially encased in thick steel caddies.

Beyond Department of Defense applications, the magnetic erasure techniques could have applications to the commercial world, where banks, human resource agencies and other organizations must ensure complete destruction of data in computer equipment being discarded.

Knotts admits he'll be a bit sad to see the project end.

"This was certainly an unusual project," he said. "It's not often that we get paid to crush equipment in presses, blow things up and set off fires in microwave ovens."

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>