Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology shows our ancestors ate…everything!

08.08.2005


Using a powerful microscope and computer software, a team of scientists from Johns Hopkins, the University of Arkansas, Worcester Polytechnic Institute and elsewhere has developed a faster and more objective way to examine the surfaces of fossilized teeth, a practice used to figure out the diets of our early ancestors.



By comparing teeth from two species of early humans, Australopithecus africanus and Paranthropus robustus, the researchers confirm previous evidence that A. africanus ate more tough foods, such as leaves, and P. robustus ate more hard, brittle foods. But they also revealed wear patterns suggesting that both species had variable diets. "This new information implies that early humans evolved and altered their diet according to seasonal and other changes in order to survive," said Mark Teaford, Ph.D., professor of functional anatomy and evolution at the Johns Hopkins School of Medicine.

The new approach to studying dental microwear, the microscopic pits and scratches on the tooth surface caused by use, offers a more accurate measurement of the surface’s appearance and is described in the August 4 issue of Nature.


"Paleontologists and physical anthropologists have had a somewhat naive view on diet, in part due to the limitations of time-consuming, subjective approaches to analyzing teeth," said Teaford. "So it’s a huge step to have a reliable technology that detects subtler diet variations."

A team of scientists from the University of Arkansas and Worcester Polytechnic Institute developed the software, called "scale-sensitive fractal analysis," to analyze fossilized tooth surfaces through a confocal microscope, which allows three-dimensional analysis of an object. "You put the specimen in and the microscope is programmed to step down at fine intervals, perform its series of scans, and collect 3D coordinates for each data point," said Teaford. The result is like a map of the earth that shows mountains, valleys and plains in full relief, only at a microscopic scale.

As anticipated from traditional examination of fossilized teeth, the tooth surfaces of P. robustus were more pitted and complex, while those of A. africanus were more scratched, with features often running in more uniform directions. However, according to Teaford, who along with researchers from the University of Arkansas, Stony Brook University, and Pennsylvania State University carried out the data analysis, the study also revealed unexpected variability in the samples for each species and overlapping data for the two species. The researchers say this suggests that both species relied on their less preferred foods during periods of food scarcity. "If members of a species live in a seasonal environment, they can get all the soft fruit they need during the wet season," Teaford added. "But come dry season, they may have to process something very hard or tough in order to survive."

"For years, it’s been a dream of many researchers interested in our lineage to obtain this kind of information," continued Teaford. "And the computer software is phenomenal, the heart and soul of this project. We now have a reliable technology to quickly and accurately measure such surfaces." Teaford said future applications of the computer software include not only projects in paleontology and anthropology, but also engineering. "You could use it to examine the wear of metal surfaces on each other or to monitor clean surfaces at a microscopic scale," said Teaford.

Besides Teaford, the authors of the paper are Robert Scott and Peter Ungar of the University of Arkansas; Torbjorn Bergstrom and Christopher Brown of Worcester Polytechnic Institute; Frederick Grine of State University of New York at Stony Brook; and Alan Walker of Pennsylvania State University.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Information Technology:

nachricht Interactive software tool makes complex mold design simple
16.08.2018 | Institute of Science and Technology Austria

nachricht Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project
16.08.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>