Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart maths for greener mill design

19.09.2003


A webGF-Mill image showing the motion of particles adjacent to a lifter bar. Particle colouring indicates particle diameter; red indicating large particles and blue indicating small particles


A webGF-Mill image showing the motion of rocks and steel balls in a section along the length of a grinding mill. Particle colouring indicates particle speed with red being the fastest moving particles and blue the slowest or stationary particles.


CSIRO has developed an Internet-based simulation tool that predicts the motion of particles inside grinding mills, providing insight into the way mills work and enabling huge energy savings from smarter, more energy efficient design.

webGF-Mill assesses the design and function of the grinding mills used at mines to crush ore.

"Improving mill design is important because of the amount of energy that mills use," says CSIRO mathematician Dave Morton. "Typically, grinding mills are very inefficient. An average mill around 10 metres in diameter consumes roughly the energy required to supply 10 000 average Australian households. Unfortunately, only 5% of this energy is consumed by the processes that actually break the rocks inside the mill."



"As well as decreasing costs for mining companies, improving mill performance has the potential to significantly reduce global consumption of fossil fuels and thus provide important environmental benefits," he says.

webGF-Mill, uses sophisticated simulation techniques to predict the collective motion of large numbers of particles. These methods, developed by CSIRO mathematicians, provide tools for studying the flow of granular materials such as minerals, powders and cereals. Understanding the way that granules move helps companies develop efficient methods for production, processing and transport of these materials.

webGF-Mill is used to study three types of mills, the larger SAG (semi-autogenous grinding) and AG (autogenous grinding) mills, and the smaller ball mills.

As Australia is one of the world’s largest mineral producers, many mills are used at mine sites throughout Australia.

Typically, material is dug out of a mine as rocks up to 2m in size. Crushers break the rocks down to particles of around 200-300mm, which are then ground further in a SAG or AG mill. Oversized particles are then sent to ball mills for further crushing. Crushed material accepted from SAG, AG and ball mills is sent to flotation plants where valuable minerals are separated from the dirt for further processing.

webGF-Mill can be used to simulate a variety of different mill sizes, lifter geometries, ball and rock distributions, and fill levels.

For further information visit www.cmis.csiro.au/webgf

More information:

Dave Morton, mobile: 0407 257 281
Email: dave.morton@csiro.au
CSIRO Mathematical and Information Sciences
Media assistance :
Andrea Mettenmeyer, mobile: 0415 199 434
Email: andrea.mettenmeyer@csiro.au
CSIRO Mathematical and Information Sciences

Rosie Schmedding | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=PrGFmill

More articles from Information Technology:

nachricht Marine Skin dives deeper for better monitoring
23.04.2019 | King Abdullah University of Science & Technology (KAUST)

nachricht CubeSats prove their worth for scientific missions
17.04.2019 | American Physical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>