Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research promises faster, cheaper and more reliable microchips

20.01.2003


A project between academia and industry is aiming to spark a world electronics revolution by producing faster, cheaper and more reliable microchips.



The University of Newcastle upon Tyne, UK, has joined forces with Amtel, on North Tyneside in the North East of England, to create ‘strained silicon’ microchips, which involves adding a material called germanium to the traditional silicon used in semiconductor manufacturing.

Atmel, whose silicon chips find applications in such diverse products as smart cards and game consoles like XBOX, is playing host to a team of five Newcastle University researchers led by top microelectronics professor Anthony O’Neill.


“With this process we can create strained silicon microchips, which will be much faster or use less battery power than conventional microchips” explained Professor Anthony O’Neill, who leads a team of 5 researchers. The team, hosted by Atmel, aim to produce the world’s first strained silicon technology, ahead of the competition.

“Microchips have doubled in performance every 18 months for the last 30 years, but the end of the road is now in sight, which means new innovations like strained silicon are needed at the leading edge of microelectronics,” added Professor O’Neill, l who has been working with strained silicon processes for almost ten years.

Atmel Managing Director Craig McInnes said: “This is great news for the North East because it brings real, commercial research and development to the region. This will help develop the knowledge-based economy which is vital for our future.

“We have the potential here for developing a brand new process which will give us cheaper and faster chips. These will be the market leaders of tomorrow. Atmel and Newcastle University have joined forces to develop some of the world’s fastest microchips.”

The research and development project based at Atmel’s North Tyneside semiconductor factory and involves joint working to unravel the complexities of working with a new material called strained silicon germanium.

Strained silicon on silicon-germanium has been tipped as one of the key emergent technologies for the next generation of semiconductors.

If the venture proves successful it will bring leading edge technology to the North East.

The two sides have entered in to a joint collaborative agreement and will share the fruits of the development if it proves to be a world beater.

Atmel will supply the manufacturing know-how to speed up the development.

The joint venture marks a break-though in collaborative working between Newcastle University and industry.

Prof O’Neill added: “This really is getting the research out of the lab into the commercial world. Working with Atmel will allow us to take the product from the drawing board to marketable reality a lot quicker than relying on the limited resources available to universities.

“Getting products to market quickly is vital in the fast-moving world of semiconductor manufacturing and development. If we are successful we will have a world first made on Tyneside.”

Claire Jordan | alfa

More articles from Information Technology:

nachricht Spintronics: Faster data processing through ultrashort electric pulses
02.07.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Multi-sensor system for the precise and efficient inspection of roads, railways and similar assets
01.07.2020 | Fraunhofer IPM

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>