Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Piecing together the next generation of cognitive robots

05.05.2008
Building robots with anything akin to human intelligence remains a far off vision, but European researchers are making progress on piecing together a new generation of machines that are more aware of their environment and better able to interact with humans.

Making robots more responsive would allow them to be used in a greater variety of sophisticated tasks in the manufacturing and service sectors. Such robots could be used as home helpers and caregivers, for example.

As research into artificial cognitive systems (ACS) has progressed in recent years it has grown into a highly fragmented field. Some researchers and teams have concentrated on machine vision, others on spatial cognition, and on human-robot interaction, among many other disciplines.

All have made progress, but, as the EU-funded project CoSy (Cognitive Systems for Cognitive Assistants) has shown, by working together the researchers can make even more advances in the field.

“We have brought together one of the broadest and most varied teams of researchers in this field,” says Geert-Jan Kruijff, the CoSy project manager at the German Research Centre for Artificial Intelligence. “This has resulted in an ACS architecture that integrates multiple cognitive functions to create robots that are more self-aware, understand their environment and can better interact with humans.”

The CoSy ACS is indeed greater than the sum of its parts. It incorporates a range of technologies from a design for cognitive architecture, spatial cognition, human-robot interaction and situated dialogue processing, to developmental models of visual processing.

“We have learnt how to put the pieces of ACS together, rather than just studying them separately,” adds Jeremy Wyatt, one of the project managers at the UK’s University of Birmingham.

The researchers have made the ACS architecture toolkit they developed available under an open source license. They want to encourage further research. The toolkit has already sparked several spin-off initiatives.

Overcoming the integration challenge
“The integration of different components in an ACS is one of the greatest challenges in robotics,” Kruijff says. “Getting robots to understand their environment from visual inputs and to interact with humans from spoken commands and relate what is said to their environment is enormously complex.”

Because of the complexity most robots developed to date have tended to be reactive. They simply react to their environment rather than act in it autonomously. Similar to a beetle that scuttles away when prodded, many mobile robots back off when they collide with an object, but have little self-awareness or understanding of the space around them and what they can do there.

In comparison, a demonstrator called the Explorer developed by the CoSy team has a more human-like understanding of its environment. Explorer can even talk about its surroundings with a human.

Instead of using just geometric data to create a map of its surroundings, the Explorer also incorporates qualitative, topographical information. Through interaction with humans it can then learn to recognise objects, spaces and their uses. For example, if it sees a coffee machine it may reason that it is in a kitchen. If it sees a sofa it may conclude it is in a living room.

“The robot sees a room much as humans see it because it has a conceptual understanding of space,” Kruijff notes.

Another demonstrator, called the PlayMate, applied machine vision and spatial recognition in a different context. PlayMate uses a robotic arm to manipulate objects in response to human instructions.

In Wyatt’s view the development of machine vision and its integration with other ACS components is still a big obstacle to creating more advanced robots, especially if the goal is to replicate human sight and awareness.

“Don’t underestimate how sophisticated we are…,” he says. “We don’t realise how agile our brains are at interpreting what we see. You can pick out colours from a scene, look at a bottle of water, a packet of cornflakes, or a coffee mug and know what activities each of them allows. You recognise them, see where to grasp them, and how to manipulate them, and you do it all seamlessly. We are still so very, very far from doing that with robots.”

Robotic ‘gofers’
Fortunately, replicating human-like intelligence and awareness, if it is indeed possible, is not necessary when creating robots that are useful to humans.

Kruijff foresees robots akin to those developed in the CoSy project becoming an everyday sight over the coming years in what he describes as ‘gofer scenarios’. Already some robots with a lower level of intelligence are being used to bring medicines to patients in hospitals and could be used to transport documents around office buildings.

Robotic vacuum cleaners are becoming increasingly popular in homes, as too are toys that incorporate artificial intelligence. And the creation of robots that are able to interact with people opens the door to robotic home helpers and caregivers.

“In the future people may all be waited on by robots in their old age,” Wyatt says.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89704

More articles from Information Technology:

nachricht Tiny optical cavity could make quantum networks possible
31.03.2020 | California Institute of Technology

nachricht Chip-based devices improve practicality of quantum-secured communication
23.03.2020 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection

31.03.2020 | Life Sciences

A 'cardiac patch with bioink' developed to repair heart

31.03.2020 | Life Sciences

Artificial intelligence can speed up the detection of stroke

31.03.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>