Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The next step in robot development is child’s play

21.04.2008
Teaching robots to understand enough about the real world to allow them act independently has proved to be much more difficult than first thought.

The team behind the iCub robot believes it, like children, will learn best from its own experiences.

The technologies developed on the iCub platform – such as grasping, locomotion, interaction, and even language-action association – are of great relevance to further advances in the field of industrial service robotics.

The EU-funded RobotCub project, which designed the iCub, will send one each to six European research labs. Each of the labs proposed winning projects to help train the robots to learn about their surroundings – just as a child would.

The six projects include one from Imperial College London that will explore how ‘mirror neurons’ found in the human brain can be translated into a digital application. ‘Mirror neurons’, discovered in the early 1990s, trigger memories of previous experiences when humans are trying to understand the physical actions of others. A separate team at UPF Barcelona will also work on iCub’s ‘cognitive architecture’.

At the same time, a team headquartered at UPMC in Paris will explore the dynamics needed to achieve full body control for iCub. Meanwhile, researchers at TUM Munich will work on the development of iCub’s manipulation skills. A project team from the University of Lyons will explore internal simulation techniques – something our brains do when planning actions or trying to understand the actions of others.

Over in Turkey, a team based at METU in Ankara will focus almost exclusively on language acquisition and the iCub’s ability to link objects with verbal utterances.

“The six winners had to show they could really use and maintain the robot, and secondly the project had to exploit the capabilities of the robot,” says Giorgio Metta. “Looking at the proposals from the winners, it was clear that if we gave them a robot we would get something in return.”

The iCub robots are about the size of three-year-old children, with highly dexterous hands and fully articulated heads and eyes. They have hearing and touch capabilities and are designed to be able to crawl on all fours and to sit up.

Humans develop their abilities to understand and interact with the world around them through their experiences. As small children, we learn by doing and we understand the actions of others by comparing their actions to our previous experience.

The developers of iCub want to develop their robots’ cognitive capabilities by mimicking that process. Researchers from the EU-funded Robotcub project designed the iCub’s hardware and software using a modular system. The design increases the efficiency of the robot, and also allows researcher to more easily update individual components. The modular design also allows large numbers of researchers to work independently on separate aspects of the robot.

iCub’s software coding, along with technical drawings, are free to anyone who wishes to download and use them.

“We really like the idea of being open as it is a way to build a community of many people working towards a common objective,” says Giorgio Metta, one of the developers of iCub. “We need a critical mass working on these types of problems. If you get 50 researchers, they can really layer knowledge and build a more complex system. Joining forces really makes economic sense for the European Commission that is funding these projects and it makes scientific sense.”

Built-in learning skills
While the iCub’s hardware and mechanical parts are not expected to change much over the next 18 months, researchers expect to develop the software further. To enable iCub to learn by doing, the Robotcub research team is trying to pre-fit it with certain innate skills.

These include the ability to track objects visually or by the sounds – with some element of prediction of where the tracked object will move to next. iCub should also be able to navigate based on landmarks and a sense of its own position.

But the first and key skill iCub needs for learning by doing is an ability to reach towards a fixed point. By October this year, the iCub developers plan to develop the robot so it is able to analyse the information it receives via its vision and feel ‘senses’. The robot will then be able to use this information to perform at least some crude grasping behaviour – reaching outwards and closing its fingers around an object.

“Grasping is the first step in developing cognition as it is required to learn how to use tools and to understand that if you interact with an object it has consequences,” says Giorgio Metta. “From there the robot can develop more complex behaviours as it learns that particular objects are best manipulated in certain ways.”

Once the assembly of the six robots for the research projects is completed, the developers plan to build more iCubs, creating between 15 and 20 in use around Europe.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89673

More articles from Information Technology:

nachricht First machine learning method capable of accurate extrapolation
13.07.2018 | Institute of Science and Technology Austria

nachricht A step closer to single-atom data storage
13.07.2018 | Ecole Polytechnique Fédérale de Lausanne

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>