Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The next step in robot development is child’s play

21.04.2008
Teaching robots to understand enough about the real world to allow them act independently has proved to be much more difficult than first thought.

The team behind the iCub robot believes it, like children, will learn best from its own experiences.

The technologies developed on the iCub platform – such as grasping, locomotion, interaction, and even language-action association – are of great relevance to further advances in the field of industrial service robotics.

The EU-funded RobotCub project, which designed the iCub, will send one each to six European research labs. Each of the labs proposed winning projects to help train the robots to learn about their surroundings – just as a child would.

The six projects include one from Imperial College London that will explore how ‘mirror neurons’ found in the human brain can be translated into a digital application. ‘Mirror neurons’, discovered in the early 1990s, trigger memories of previous experiences when humans are trying to understand the physical actions of others. A separate team at UPF Barcelona will also work on iCub’s ‘cognitive architecture’.

At the same time, a team headquartered at UPMC in Paris will explore the dynamics needed to achieve full body control for iCub. Meanwhile, researchers at TUM Munich will work on the development of iCub’s manipulation skills. A project team from the University of Lyons will explore internal simulation techniques – something our brains do when planning actions or trying to understand the actions of others.

Over in Turkey, a team based at METU in Ankara will focus almost exclusively on language acquisition and the iCub’s ability to link objects with verbal utterances.

“The six winners had to show they could really use and maintain the robot, and secondly the project had to exploit the capabilities of the robot,” says Giorgio Metta. “Looking at the proposals from the winners, it was clear that if we gave them a robot we would get something in return.”

The iCub robots are about the size of three-year-old children, with highly dexterous hands and fully articulated heads and eyes. They have hearing and touch capabilities and are designed to be able to crawl on all fours and to sit up.

Humans develop their abilities to understand and interact with the world around them through their experiences. As small children, we learn by doing and we understand the actions of others by comparing their actions to our previous experience.

The developers of iCub want to develop their robots’ cognitive capabilities by mimicking that process. Researchers from the EU-funded Robotcub project designed the iCub’s hardware and software using a modular system. The design increases the efficiency of the robot, and also allows researcher to more easily update individual components. The modular design also allows large numbers of researchers to work independently on separate aspects of the robot.

iCub’s software coding, along with technical drawings, are free to anyone who wishes to download and use them.

“We really like the idea of being open as it is a way to build a community of many people working towards a common objective,” says Giorgio Metta, one of the developers of iCub. “We need a critical mass working on these types of problems. If you get 50 researchers, they can really layer knowledge and build a more complex system. Joining forces really makes economic sense for the European Commission that is funding these projects and it makes scientific sense.”

Built-in learning skills
While the iCub’s hardware and mechanical parts are not expected to change much over the next 18 months, researchers expect to develop the software further. To enable iCub to learn by doing, the Robotcub research team is trying to pre-fit it with certain innate skills.

These include the ability to track objects visually or by the sounds – with some element of prediction of where the tracked object will move to next. iCub should also be able to navigate based on landmarks and a sense of its own position.

But the first and key skill iCub needs for learning by doing is an ability to reach towards a fixed point. By October this year, the iCub developers plan to develop the robot so it is able to analyse the information it receives via its vision and feel ‘senses’. The robot will then be able to use this information to perform at least some crude grasping behaviour – reaching outwards and closing its fingers around an object.

“Grasping is the first step in developing cognition as it is required to learn how to use tools and to understand that if you interact with an object it has consequences,” says Giorgio Metta. “From there the robot can develop more complex behaviours as it learns that particular objects are best manipulated in certain ways.”

Once the assembly of the six robots for the research projects is completed, the developers plan to build more iCubs, creating between 15 and 20 in use around Europe.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89673

More articles from Information Technology:

nachricht AI and high-performance computing extend evolution to superconductors
27.05.2019 | DOE/Argonne National Laboratory

nachricht 'Neural Lander' uses AI to land drones smoothly
27.05.2019 | California Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Colliding lasers double the energy of proton beams

Researchers from Sweden's Chalmers University of Technology and the University of Gothenburg present a new method which can double the energy of a proton beam produced by laser-based particle accelerators. The breakthrough could lead to more compact, cheaper equipment that could be useful for many applications, including proton therapy.

Proton therapy involves firing a beam of accelerated protons at cancerous tumours, killing them through irradiation. But the equipment needed is so large and...

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

AI and high-performance computing extend evolution to superconductors

27.05.2019 | Information Technology

Meteor magnets in outer space

27.05.2019 | Physics and Astronomy

Coat of proteins makes viruses more infectious and links them to Alzheimer's disease

27.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>