Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Computer Simulation of Structure of RNA-Molecules

15.02.2008
For a long time ribonucleic acids were just regarded as carriers transferring genetic information in the cell nucleus.

The manifold biological importance of small RNA-fragments has only been recognized in the last years: they have important regulatory and catalytic functions within the cell.

What scientists had only been able to examine in experiments so far, has now been simulated on a computer for the first time by Dr. Dietmar Paschek, a chemist of Technische Universität Dortmund, together with his American colleague, Prof. Angel Garcia. Their innovative method describes the complex folding process of RNA-molecules, which happens on the microsecond-scale, to be viewed in detailed single steps with atomic resolution.

A standard personal computer would have to run for 35 years to simulate the complex process. That is why Paschek teamed up with his colleague from Rensselaer Polytechnic Institute in Troy, New York (USA), as this institute currently owns the world’s biggest university-based computer cluster. The simulation was only made possible by using a parallel computer code developed in Dortmund. For the first time the molecular environment, including the solvent water, was described in a very realistic way.

This offers the chance to observe the behavior of an RNA-molecule within its natural environment and provides clues regarding the function and possible reactions of different RNA-molecules in the cell. Small RNA fragments have been shown to be able to specifically disable genes in laboratory tests. A discovery, for which the US-scientists Andrew Z. Fire and Craig C. Mello received the 2006 Nobel Prize for Medicine.

Even if the simulation work of Paschek and Garcia, which could build the basis for research into and further development of this and other ways of using RNA, still is singular pioneering, it could become routine in some years in view of the exponentially increasing computer power. But they can already be sure of their colleagues’ recognition.

In the latest edition of the prestigeous “Journal of the American Chemical Society” the two scientists present their results. Moreover, Dietmar Paschek was invited to report about their innovative simulation methods within the scope of a plenary lecture at this year’s American Chemical Society national meeting in New Orleans.

Ole Luennemann | alfa
Further information:
http://www.tu-dortmund.de

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>