Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for simulating yarn-cloth patterns to be unveiled at ACM SIGGRAPH

09.07.2020

Novel technique includes the stretching and bending response

The simulation of woven and knitted fabrics is an ongoing problem in computer graphics. Simulating the way a fabric drapes or moves while being worn, while accurately modeling low-level effects such as the stiffness and stretch of individual yarns, is a complicated challenge that requires sophisticated computational modeling.


A team will present a method for animating yarn-level cloth effects using a thin-shell solver. The new method will be presented at ACM SIGGRAPH 2020.

Credit: © Georg Sperl, Rahul Narain, and Chris Wojtan

In this new work, a global team of computer scientists from the Institute of Science and Technology (IST) Austria and Indian institute of Technology Delhi (IITD) has developed a method for specifically animating yarn-level cloth effects, accurately capturing the physics of the material, including the stretching and bending response.

The results of the team's homogenized computational modeling framework accurately mimic the appearance of knitted and woven materials using yarn.

The team, comprised of Georg Sperl and Chris Wojtan from IST Austria and Rahul Narain from IITD, is set to present their work at SIGGRAPH 2020. The conference, which will take place virtually this year starting 17 August, gathers a diverse network of professionals who approach computer graphics and interactive techniques from different perspectives. SIGGRAPH continues to serve as the industry's premier venue for showcasing forward-thinking ideas and research.

"Yarn-level cloth techniques produce beautifully detailed and realistic results, but it can become impractically slow to simulate full garments," Sperl, lead author of the research and Ph.D. student in the Wojtan lab at IST Austria, says.

"Our method helps make such simulations more feasible by precomputing the mechanical properties of yarn patterns and fitting continuum materials that can be used in existing mesh-based simulators.

This can greatly speed up the simulation of cloth while preserving the material's overall stretching and bending resistance and capturing characteristic phenomena of fabrics such as curling."

Picture the level of details that make up yarn cloth, from a variety of lengths and widths, the various appearances of spun thread, and the wide array of patterns created with yarn cloth by knitting, crocheting, or weaving.

The team's approach is able to capture all of these specific details and material properties of yarn-level cloth in a truly realistic and precise way.

They validated their method using stretching and draping tests that produced accurate translations of the fabric in a virtual world. Visual examples included the animation of a variety of detailed yarn-cloth patterns and techniques, i.e., slip stitch honeycomb and satin weave, showcasing more of the folds, curling, and wrinkles of the cloth while draped over an object or worn as a sweater or scarf.

One of the important challenges the team addressed was the ability to simulate yarn-level cloth faster and at scale. Their method captures the complex physics emerging from yarn patterns at a fraction of the cost of direct yarn-level cloth simulation.

"Our technique allows us to capture the resistance of multiple deformations at the same time," the authors say. "We additionally developed a procedure to fit a material model capable of capturing these effects from homogenized data. With this, we were able to automatically reproduce characteristic behaviors of different fabrics, including subtle phenomena like the interaction between stretching and curling in knitted patterns, which have not been captured in previous cloth models."

In the future, this method could expand to animate other complicated multi-physics materials like layered quilts, layered elastic material, skin tissue, and deployable shells. The team's method opens up exciting avenues for future studies by applying it to homogenization of layered or composite materials, for estimating material properties of new materials constructed from simpler components, or for inverse design problems in the manufacturing of knitted cloth.

Media Contact

Emily Drake
emily_drake@SIGGRAPH.org
312-673-4758

 @theofficialacm

http://www.acm.org 

Emily Drake | EurekAlert!
Further information:
http://visualcomputing.ist.ac.at/publications/2020/HYLC/

More articles from Information Technology:

nachricht Novel approach improves graphene-based supercapacitors
03.08.2020 | University of Technology Sydney

nachricht Germany-wide rainfall measurements by utilizing the mobile network
03.08.2020 | Karlsruher Institut für Technologie (KIT)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>