Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-gigabit access via copper

23.03.2015

New Celtic-Plus project explores cost-effective ultra-broadband access based on G.fast standard.

Celtic-Plus is launching a 4.4 million euro project to explore multiple-gigabit copper access based on G.fast, a digital subscriber line (DSL) standard for the local loop. The Gigabits Over the Legacy Drop (GOLD) project will initiate the planned second version of the G.fast standard and boost its usability in dense city areas. The goal is to develop alternative backhauling options based on copper instead of fibre. This could lead to significant cost reductions in the network, particularly within dense urban areas in Europe.


G.fast application cases

TNO


Logo of Celtic-Plus project GOLD

GOLD project consortium

GOLD builds on the success of the completed HFCC/G.fast project, which demonstrated throughput of nearly 1Gbps per copper pair at 100 meters, and up to 170Mbps per copper pair at 480 meters, on a 16 pair standard cable. This is as much as an order of magnitude improvement compared to existing DSL technologies. GOLD will push G.fast even further to multiple-gigabit copper access rates by exploring a second version of the G.fast standard working at higher frequencies and preparing the ground for fifth generation fixed broadband.

“G.fast is quickly turning into a key technology for European operators,” said Trevor Linney, head of Access Network Research at BT. “During our lab evaluations, it has outperformed our expectations in terms of bitrate and reach for fixed line subscribers. Now, we have formed the GOLD project to drive further improvements in the capabilities of this exciting technology, working closely with vendors and other global operators.”

... more about:
»COPPER »DSL »Drop »EUREKA »Gigabits »Legacy »TNO »dense »pair »semiconductors

G.fast is the ideal technology for maximizing the value of existing copper infrastructure. Currently fibre roll-out is very expensive and therefore roll-outs are not happening on a large scale in the access network. G.fast bridges this gap by providing high-speed broadband over the existing copper cables.

During the HFCC/G.fast project, lab trials were performed by BT, Orange, Telefonica and TNO. In summer 2015, BT will start G.fast pilots in two UK cities, Huntingdon and Gosforth, with around 4,000 business and home connections.

About the GOLD Celtic-Plus Project:

The 4.4 million euro Celtic-Plus project GOLD (Gigabits Over the Legacy Drop) will explore multiple-gigabit copper access based on the DSL standard G.fast. GOLD focuses on the planned second version of the G.fast standard with the aim of boosting the usability of G.fast in dense city areas and thus develop alternative, cost-effective backhauling options based on copper instead of fibre.

The GOLD consortium consists of 12 companies from 8 countries including service providers BT (UK), Orange SA (FR); equipment vendors ADTRAN GmbH (DE), Alcatel-Lucent (BE), Ericsson AB (SE), Sagemcom (FR), and Telnet Redes Inteligentes SA (ES); chip vendors Marvell Semiconductors (ES) and Sckipio Technologies (IL); and researchers at Lund University (SE) and TNO (NL). The project is coordinated by Lund University.

The 3-year project started in January 2015 and will run until December 2017.

Further information will soon be available on the project website at www.4gbb.eu.

About the HFCC/G.fast Celtic-Plus Project:

The 4.2 Million euro Celtic-Plus project HFCC/G.fast (Hybrid Fibre-Copper connectivity using G.fast) advanced the emerging digital subscriber line (DSL) technology by developing innovations ranging from channel measurements and transceiver designs to novel system architectures and use cases. This has pushed the standardization process as well as the broadband deployment in Europe.

The consortium consisted of 14 organizations from nine countries and included Ericsson AB (SE), ADTRAN GmbH (DE), BT (UK), Dension Broadband Systems Kft (HU), EUR AB (SE), Orange SA (FR), Lund University (SE), Marvell Semiconductors (ES), Fundacion Tecnalia Research and Innovation (ES), Telefonica I+D (ES), Telnet Redes Inteligentes SA (ES), TNO (NL), FTW Telecommunications Research Center Vienna (AU) and Sckipio Technologies (IL).

The project started in January 2013 and completed its work in February 2015. Results are available at www.4gbb.eu

About Celtic-Plus:

Celtic-Plus is an industry-driven European research initiative to define, perform and finance through public and private funding common research projects in the area of telecommunications, new media, future Internet, and applications & services focusing on a new "Smart Connected World" paradigm. Celtic-Plus is a EUREKA ICT cluster and belongs to the inter-governmental EUREKA network.

www.celticplus.eu

Celtic Office, c/o Eurescom GmbH, Wieblinger Weg 19/4, D-69123 Heidelberg, Germany

Press contacts:

Celtic-Plus: Milon Gupta, phone: +49 6221 989-121, e-mail: gupta@celticplus.eu

GOLD project: Per Ödling, phone: +46 46 222 4941, e-mail: per.odling@eit.lth.se

BT: Press office, phone: +44 20 7356 5369, e-mail: Newsroom@bt.com

Weitere Informationen:

https://www.celticplus.eu

Milon Gupta | idw - Informationsdienst Wissenschaft

Further reports about: COPPER DSL Drop EUREKA Gigabits Legacy TNO dense pair semiconductors

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>