Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MPSD team discovers light-induced ferroelectricity in strontium titanate

14.06.2019

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to reverse such a polarisation makes ferroelectric materials particularly suitable for digital information encoding and processing.


Ultrashort terahertz pulses create a ferroelectric phase in the paraelectric strontium titanate. An optically-induced deformation of the sample results in pairs of flexoelectric domains with opposing polarisations.

© Jörg Harms / MPSD

The discovery of a light-induced ferroelectric is highly relevant for a new generation of high-speed devices, and is presented today in the journal Science.

Complex materials are special because their unusual macroscopic properties are determined by many competing tendencies. Unlike in more conventional compounds, such as the silicon crystals that make up current electronic devices, in complex materials one finds that more than one type of microscopic interaction favours more than one possible macroscopic phase.

Such competition leads then to a compromise, but one that is not unique and is often in precarious equilibrium. Hence, moderate perturbations, for example irradiating one such material with light, can induce radical changes in the properties of the solid.

Ultra-short terahertz laser pulses are especially useful because they couple directly to the crystal lattice and can deform atomic arrangements at high speeds. Coherent excitation of lattice vibrations has been shown in the past to cause changes of electrical properties or magnetic arrangements in a number of complex materials, including superconductors.

In their latest research, the scientists describe how they induced a ferroelectric order in a material, a property of solids that can be highly relevant to applications. Ferroelectricity describes the spontaneous alignment of electric dipoles, which leads to a macroscopic polarisation akin to the magnetisation in a ferromagnet.

Generally, ferroelectricity only occurs in a limited class of materials; however, the Hamburg group has discovered that even non-ferroelectric materials can be forced into a ferroelectric phase by light.

Strontium titanate (STO) is paraelectric at all temperatures and a long-range ferroelectric order never develops. Upon exciting vibrations in STO by light, the researchers observed characteristics in its optical and electrical responses typical of ferroelectricity. The origin of this surprising effect lies in the nonlinear nature of the crystal lattice.

The driven phonon delivers some of its energy in the form of pressure to the solid, resulting in a spatially varying structural deformation within the excited area. In these conditions, a material property called flexoelectricity can be activated, resulting in a macroscopic polarisation.

Strikingly, the photo-induced state was found to survive for hours after being created, showing that the material transitioned to a new quasi-stable phase.

“The ability to induce and control ferroelectric states with light on ultrafast timescales could provide the basis for next-generation technologies”, says Tobia Nova, first author of the paper. Ferroelectric materials are already at the core of devices in development, which exploit their spontaneous polarisation to make stable memory chips or “always on” computers.

Because the light-induced ferroelectric phase demonstrated in the Hamburg experiment operates at terahertz frequencies, electro-optic devices that work at such high speeds might be envisioned. Moreover, since flexoelectricity is a common material property, the ability to induce ultrafast flexoelectric polarizations extends far beyond the specific example of STO. Lastly, because STO is routinely used as a substrate in complex heterostructures, the optical access to flexoelectric polarizations should find extensive applications in the manipulation of collective phenomena at interfaces.

This work was made possible by the ERC Synergy Grant “Frontiers in Quantum Materials’ Control” (Q-MAC) and The Hamburg Centre for Ultrafast Imaging (CUI). The Center for Free-Electron Laser Science (CFEL) is a joint enterprise of DESY, the Max Planck Society and the University of Hamburg.

Wissenschaftliche Ansprechpartner:

Tobia Nova, lead author: tobia.nova@mpsd.mpg.de

Originalpublikation:

Metastable ferroelectricity in optically strained SrTiO3
https://science.sciencemag.org/content/364/6445/1075

Weitere Informationen:

http://www.mpsd.mpg.de/535170/2019-06-ferroelectric-nova

Jenny Witt | Max-Planck-Institut für Struktur und Dynamik der Materie

More articles from Information Technology:

nachricht Controlling superconducting regions within an exotic metal
11.10.2019 | Ecole Polytechnique Fédérale de Lausanne

nachricht Patented concept from Halle: novel, high-performance diodes and transistors
08.10.2019 | Martin-Luther-Universität Halle-Wittenberg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Electrochemistry to benefit photonics: Nanotubes can control laser pulses

11.10.2019 | Physics and Astronomy

Biologically inspired skin improves robots' sensory abilities (Video)

11.10.2019 | Power and Electrical Engineering

New electrolyte stops rapid performance decline of next-generation lithium battery

11.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>