Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MPSD team discovers light-induced ferroelectricity in strontium titanate

14.06.2019

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to reverse such a polarisation makes ferroelectric materials particularly suitable for digital information encoding and processing.


Ultrashort terahertz pulses create a ferroelectric phase in the paraelectric strontium titanate. An optically-induced deformation of the sample results in pairs of flexoelectric domains with opposing polarisations.

© Jörg Harms / MPSD

The discovery of a light-induced ferroelectric is highly relevant for a new generation of high-speed devices, and is presented today in the journal Science.

Complex materials are special because their unusual macroscopic properties are determined by many competing tendencies. Unlike in more conventional compounds, such as the silicon crystals that make up current electronic devices, in complex materials one finds that more than one type of microscopic interaction favours more than one possible macroscopic phase.

Such competition leads then to a compromise, but one that is not unique and is often in precarious equilibrium. Hence, moderate perturbations, for example irradiating one such material with light, can induce radical changes in the properties of the solid.

Ultra-short terahertz laser pulses are especially useful because they couple directly to the crystal lattice and can deform atomic arrangements at high speeds. Coherent excitation of lattice vibrations has been shown in the past to cause changes of electrical properties or magnetic arrangements in a number of complex materials, including superconductors.

In their latest research, the scientists describe how they induced a ferroelectric order in a material, a property of solids that can be highly relevant to applications. Ferroelectricity describes the spontaneous alignment of electric dipoles, which leads to a macroscopic polarisation akin to the magnetisation in a ferromagnet.

Generally, ferroelectricity only occurs in a limited class of materials; however, the Hamburg group has discovered that even non-ferroelectric materials can be forced into a ferroelectric phase by light.

Strontium titanate (STO) is paraelectric at all temperatures and a long-range ferroelectric order never develops. Upon exciting vibrations in STO by light, the researchers observed characteristics in its optical and electrical responses typical of ferroelectricity. The origin of this surprising effect lies in the nonlinear nature of the crystal lattice.

The driven phonon delivers some of its energy in the form of pressure to the solid, resulting in a spatially varying structural deformation within the excited area. In these conditions, a material property called flexoelectricity can be activated, resulting in a macroscopic polarisation.

Strikingly, the photo-induced state was found to survive for hours after being created, showing that the material transitioned to a new quasi-stable phase.

“The ability to induce and control ferroelectric states with light on ultrafast timescales could provide the basis for next-generation technologies”, says Tobia Nova, first author of the paper. Ferroelectric materials are already at the core of devices in development, which exploit their spontaneous polarisation to make stable memory chips or “always on” computers.

Because the light-induced ferroelectric phase demonstrated in the Hamburg experiment operates at terahertz frequencies, electro-optic devices that work at such high speeds might be envisioned. Moreover, since flexoelectricity is a common material property, the ability to induce ultrafast flexoelectric polarizations extends far beyond the specific example of STO. Lastly, because STO is routinely used as a substrate in complex heterostructures, the optical access to flexoelectric polarizations should find extensive applications in the manipulation of collective phenomena at interfaces.

This work was made possible by the ERC Synergy Grant “Frontiers in Quantum Materials’ Control” (Q-MAC) and The Hamburg Centre for Ultrafast Imaging (CUI). The Center for Free-Electron Laser Science (CFEL) is a joint enterprise of DESY, the Max Planck Society and the University of Hamburg.

Wissenschaftliche Ansprechpartner:

Tobia Nova, lead author: tobia.nova@mpsd.mpg.de

Originalpublikation:

Metastable ferroelectricity in optically strained SrTiO3
https://science.sciencemag.org/content/364/6445/1075

Weitere Informationen:

http://www.mpsd.mpg.de/535170/2019-06-ferroelectric-nova

Jenny Witt | Max-Planck-Institut für Struktur und Dynamik der Materie

More articles from Information Technology:

nachricht Foundations Laid for Building-Scale GPS Technology
20.01.2020 | Technische Universität Chemnitz

nachricht Man versus machine: Can AI do science?
14.01.2020 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

New self-assembled monolayer is resistant to air

22.01.2020 | Life Sciences

Ultrafast camera takes 1 trillion frames per second of transparent objects and phenomena

22.01.2020 | Power and Electrical Engineering

Mosquitoes are drawn to flowers as much as people -- and now scientists know why

22.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>