Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metamolds: Molding a mold

20.08.2018

Scientists develop new technique for creating ideal silicone molds faster and cheaper. Their work was presented at the prestigious SIGGRAPH conference

The method of fabricating objects via silicone molding has a long tradition. Until now, however, creating molds for casting complex objects required a lot of experience and still involved manual work, which made the process expensive and slow.


Metamolds (red pieces far left and right) are used to fabricate the silicone molds (greenish and white shapes in the middle). The silicone can then be used repeatedly to form replicas (front).

Luigi Malomo

Researchers from the Istituto di Scienza e Tecnologie dell’Informazione (ISTI-CNR) and the Institute of Science and Technology Austria (IST Austria) have now developed a tool that not only automatically finds the best way of designing the molds but also delivers templates for so-called “metamolds”: Rigid molds that are 3D-printed and that are used to fabricate the optimized silicone molds.

Their method, which can lower the cost of this fabricating technique, is presented at this year’s prestigious SIGGRAPH conference where IST Austria researchers are involved in a total of five presentations.

When it comes to fabricating a series of identical objects, the technique of molding is playing an important role. One of the favored materials for the mold is silicone, as it is deformable and therefore forgiving when it comes to extracting complex objects from the mold at the end of the fabrication process.

Extracting the object from the mold generally requires deciding for a direction in which the mold pieces can be separated without getting caught in overhanging parts of the object. A careful cut needed to be placed to open the mold. This process, which until now involved manual work from an experienced craftsman, has now been automated.

“Until now, silicone molding of complex shapes was a craft that needed years of experience and a skillful hand. You needed to know where to place the cuts ideally and the work was done manually. Our new tool makes this method accessible for everyone,” says Bernd Bickel.

The user only needs to upload the desired shape to the computer. The tool then helps in two steps: first, it calculates where the cuts need to be placed for an optimal result. This means that the smallest possible number of mold pieces is used and that the object can be safely removed from the mold once it is finished.

Then the computer goes one step further: it automatically creates the 3D-printable templates of the metamold, a container that is used to fabricate the ideal silicone mold pieces. The printed metamolds are filled with liquid silicone to produce the final silicone mold pieces, which are reusable and allow to cast multiple replicas.

The researchers expect that their method will prove very useful for small series, for example in jewelry design or art. “When you are not producing millions of copies, then this is the method of choice,“ says Thomas Alderighi from ISTI-CNR, the first author of the study who has spent two months at IST Austria as an intern in the research group of Bernd Bickel.

As noted by Paolo Cignoni, research director at ISTI – CNR, an interesting field of application is the production of a small number of replicas for museums that could be handled by visitors for a deeper experience of the exhibition.
The final silicone mold pieces can then be used to create replicas from a variety of different materials, including traditional ones like various types of resin, but also unconventional ones like chocolate or ice.

About IST Austria
The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas. http://www.ist.ac.at

Wissenschaftliche Ansprechpartner:

Bernd Bickel
bernd.bickel@ist.ac.at

Originalpublikation:

Thomas Alderighi, Luigi Malomo, Daniela Giorgi, Nico Pietroni, Bernd Bickel, and Paolo Cignoni. August 2018. “Metamolds: Computational Design of Silicone Molds”. ACM Trans. Graph., Vol. 37, 4, Article 136, 13 pages. DOI: 10.1145/3197517.3201381
https://repository.ist.ac.at/1038/1/metamolds_authorversion.pdf

Weitere Informationen:

http://visualcomputing.ist.ac.at/publications/2018/Metamolds/ project page
https://www.youtube.com/watch?v=7M2TbQnRLNg Video

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Further reports about: Metamolds SIGGRAPH basic research computer science silicone silicone molds

More articles from Information Technology:

nachricht UCI electrical engineering team develops 'beyond 5G' wireless transceiver
16.07.2019 | University of California - Irvine

nachricht Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?
12.07.2019 | Technische Universität München

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Flying Laptop satellite mission extended by two years - Successfully in orbit since July 14, 2017

16.07.2019 | Physics and Astronomy

New safer, inexpensive way to propel small satellites

16.07.2019 | Power and Electrical Engineering

UCI electrical engineering team develops 'beyond 5G' wireless transceiver

16.07.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>