Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Intelligent robot system at the TU Bergakademie Freiberg improves drinking water control in inland waters


The swimming robot of TU Freiberg, equipped with sensors, is supposed to drive completely autonomously on the water thanks to artificial intelligence and continuously measure various environmental parameters. In this way, the water quality of reservoirs and dams can be checked in real time at any time.

Inland waters are of outstanding importance in Germany and worldwide for drinking water supply, ecology, tourism and agriculture. In Saxony alone there are 23 drinking water reservoirs, 80 other reservoirs and countless other lakes and ponds.

Two computer scientists from Freiberg working on the newly developed swimming robot "Elisabeth" in the CAVE.

Photo: Detlev Müller/ TU Bergakademie Freiberg

Microplastics, increased levels of organic carbon and the influx of nutrients pollute many water bodies. In addition, the previous control of water quality through selective sampling on site and subsequent analysis in the laboratory is very time-consuming and costly.

A new robotic sensor system from the Technical University Bergakademie Freiberg will enable real-time monitoring in drinking water reservoirs and reservoirs as well as newly flooded open-cast mining lakes. In this way, even short-term ecological and hydrological changes will be immediately visible.

To this end, scientists in the new ESF project "RoBiMo" (Robot-Assisted Inland Water Monitoring) are now developing special sensors that can measure, among other things, temperature, pressure, pH value, phosphate or mercury content, as well as gas and solids content.

A sonar is to scan the waters from the bottom to the surface. The system is to be attached to the autonomous swimming robot "Elisabeth", also developed at the TU Freiberg. During its journey, it will continuously measure all relevant data and send them to a base station on the shore. From there, the Freiberg scientists can process them with the help of artificial intelligence and display them three-dimensionally in virtual reality.

"The resulting data enables us to draw conclusions about the state of inland waters, groundwater inflows and the CO2 storage function of lakes, for example. With these findings, we can understand water as a resource even better, guarantee its high quality for humans and the environment and develop concepts for a more sustainable use of it," explains Prof. Yvonne Joseph, coordinator of the RoBiMo project.

The interdisciplinary project, which was officially launched in January, fits into the Centre for Water Research Freiberg, which bundles the manifold activities in the field of research and teaching at the Bergakademie. It is funded by the state of Saxony and the European Social Fund for three years (January 2020 to December 2022).

Four young scientists and a total of seven professorships from various fields of environmental, geo and engineering sciences as well as microelectronics and computer science are involved. The science divers of the Scientific Diving Center of TU Freiberg are also involved.

During dives, they determine so-called "ground truth" data, which are necessary for the analysis of remote sensing data such as measured variables and "real" underwater geography.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Yvonne Joseph, Tel.: +49 3731 39 2146, M. Sc. Sebastian Pose, Tel.: +49 3731 39 3252

Weitere Informationen:

Luisa Rischer | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht New method for simulating yarn-cloth patterns to be unveiled at ACM SIGGRAPH
09.07.2020 | Association for Computing Machinery

nachricht Virtual Reality Environments for the Home Office
09.07.2020 | Universität Stuttgart

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Latest News

Porous graphene ribbons doped with nitrogen for electronics and quantum computing

09.07.2020 | Physics and Astronomy

Record efficiency for printed solar cells

09.07.2020 | Power and Electrical Engineering

Rock 'n' control

09.07.2020 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>