Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good vibrations for the future of computing

04.10.2017

Vibrating mechanical switches that can be cascaded to perform complex computational operations could take computing significantly further than today's technologies. KAUST researchers have demonstrated an alternative technology based on mechanical vibrations.

The microcomputer processors found inside every computer, mobile phone and microwave comprise mind-bogglingly complex networks of millions or billions of microscopic transistors -- electrical switches that turn on when a current flows across their terminals.


The cascadable, vibration-driven microelectromechanical logic gate takes electrical signals as inputs and produces a logic output (1 or 0) based on the resonance of the microbeam.

Credit: © 2016 KAUST

These transistors are networked together to construct logic gates that perform operations, such as AND (when two inputs are on) and OR (when either input is on). In turn, these logic gates are connected to much larger networks to allow increasingly complex operations.

With each transistor consuming electrical current and generating heat even when not being actively switched, and with transistors approaching their physical limits of miniaturization and efficiency, the search is on for alternative technology that will eventually replace the electrical transistor and take computing into the future.

Saad Ilyas and Nizar Jaber, doctoral researchers in the laboratory of Mohammad Younis, have now demonstrated a scalable, efficient alternative technology, not based on electrical current, but on mechanical vibrations excited by multifrequency electrical inputs.

"Electromechanical systems offer a major advantage over existing technology in that they are leakage free: that is, unlike electrical transistors, they only consume power when switched," explains Ilyas. "They also require fewer gates per computing function, resulting in lower complexity, and they can be fabricated with higher integration densities -- it is even predicted that these systems could be scaled down to the molecular level."

Microelectromechanical systems (MEMS) have been investigated in the past for logic operations, but it has been a challenge to devise a mode of operation that allows the MEMS logic gates to be cascaded to form arbitrary computational functions. Jaber and Younis have come up with a novel technique to perform logic operations using MEMS based on frequency mixing, which holds great potential for cascading.

"We use an electrical signal as an input, which causes a clamped polymer microbeam to vibrate at a certain resonance frequency," says Jaber. "This in turn generates motional current as an electrical signal with the same frequency, which could then be cascaded into the input of another MEMS logic gate."

The team demonstrated various logic operations at a single operating frequency, which is an important step towards cascading as the next milestone in MEMS resonator-based computing. Their logic gates are also compatible with existing fabrication techniques.

Carolyn Unck | EurekAlert!

More articles from Information Technology:

nachricht Touchscreens go 3D with buttons that pulsate and vibrate under your fingertips
14.03.2019 | Universität des Saarlandes

nachricht EU project CALADAN set to reduce manufacturing cost of Terabit/s capable optical transceivers
11.03.2019 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

A peek into lymph nodes

15.03.2019 | Medical Engineering

Novel methods for analyzing neural circuits for innate behaviors in insects

15.03.2019 | Life Sciences

Converting biomass by applying mechanical force

15.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>