Water, water, everywhere… but is it safe to drink?

Sherwood Lollar is taking part in the THINK CANADA Press Breakfast Sunday at AAAS. Her research examines society's efforts to reverse and stop groundwater pollution, and the effectiveness of bioremediation technologies—using microbes to clean up organic contaminants such as petroleum hydrocarbons (oil, gasoline or diesel) or chemicals used in the electronics or transportation industries.

While the disposal of these organic contaminants tends to be well regulated today, this has not always been the case. Lax regulations and enforcement during the period immediately after the Second World War has left Europe and North America with a legacy of past contamination.

“This contamination has had a pervasive impact on the environment,” says Sherwood Lollar. “It is still out there, and it needs to be dealt with.”

Over the past decade, many techniques used to clean up groundwater contamination have harnessed the power of microbiology and the work of geochemists like Sherwood Lollar. “We are not genetically engineering microbes,” she explains. “In many settings, naturally occurring microbes feed off the organic contaminants and, in the process, convert them to non-toxic end products.”

Until now, the real difficulty has been in proving that the process exists and that the microbes are actually cleaning up the contaminants. Sherwood Lollar has developed techniques that show where the clean-up is happening and, just as importantly, where it is not.

“Elements like carbon have different stable isotopes: Carbon-12 and Carbon-13. One is slightly heavier than the other, and the microbes tend to feed mostly on the lighter one. When the microbes have been working for some time, the ratio of heavy-to-light carbon will change. It is this change—referred to as an isotopic signature—that lets us know the water is being cleaned up,” says Sherwood Lollar.

By cleaning up contaminated groundwater, it is possible to recuperate what would otherwise be a lost resource. The technique is starting to be used by regulators, and Sherwood Lollar is working with an international group of scientists to put together a guidance document for the United States Environmental Protection Agency (EPA).

This will provide a set of recommendations about use in the field for practitioners, which will be a first step towards mainstreaming the technique.

“It's a common misconception that water—and especially our supply of groundwater—is a renewable resource,” says Sherwood Lollar. “But it isn't. So, it is particularly important that we manage it well and that we do whatever we can to conserve, protect and remediate what we have.”

Sherwood Lollar will present her research and answer questions from the press, as part of the THINK CANADA Press Breakfast on the theme of water. The breakfast will be held in Room 202A of the Washington Convention Center at 8 a.m. on February 20, 2011 and will feature Canadian research experts across natural sciences and engineering, health, social sciences and humanities.

Media Contact

Michael Adams EurekAlert!

More Information:

http://www.sshrc-crsh.gc.ca

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors