Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study helps predict impact of ocean acidification on shellfish

06.08.2012
An international study to understand and predict the likely impact of ocean acidification on shellfish and other marine organisms living in seas from the tropics to the poles is published this week (date) in the journal Global Change Biology.

Ocean acidification is occurring because some of the increased carbon dioxide humans are adding to the atmosphere dissolves in the ocean and reacts with water to produce an acid.

The results suggest that increased acidity is affecting the size and weight of shells and skeletons, and the trend is widespread across marine species. These animals are an important food source for marine predators such as tropical seabirds and seals as well as being a valuable ingredient in human food production. Consequently, these changes are likely to affect humans and the ocean's large animals.

UK scientists from the British Antarctic Survey (BAS) and the National Oceanography Centre (NOC), together with colleagues from Australia's James Cook and Melbourne Universities and the National University of Singapore, investigated the natural variation in shell thickness and skeletal size in four types of marine creatures living in 12 different environments from the tropics to the Polar Regions. Their aim was to get a clearer understanding of similarities and differences between species, and to make better predictions of how these animals might respond to increasing acidity in the oceans.

The effort required by clams, sea snails and other shellfish to extract calcium carbonate from seawater to build their shells and skeletons varies from place to place in the world's oceans. A number of factors, including temperature and pressure, affect the availability of calcium carbonate for species that produce carbonate skeletons.

There is already evidence that ocean acidification is affecting the ability of some marine species to grow, especially during their early life stages, and there is mounting concern about whether or not these species can evolve or adapt to cope with increases in acidity in the coming decades.

This study shows, over evolutionary time, animals have adapted to living in environments where calcium carbonate is relatively difficult to obtain by forming lighter skeletons. Carbon dioxide from fossil fuel combustion is altering seawater chemistry in the same way, in a process called ocean acidification and this is making it harder for marine animals to make shells and skeletons.

The four different types of marine animals examined were clams, sea snails, lampshells and sea urchins. Scientists found that as the availability of calcium carbonate decreases skeletons get lighter and account for a smaller part of the animal's weight. The fact that same effect occurs consistently in all four types suggests the effect is widespread across marine species, and that increasing ocean acidification will progressively reduce the availability of calcium carbonate.

Professor Lloyd Peck of British Antarctic Survey said,

"This effect is strongest at low temperatures and the results showed polar species to have the smallest and lightest skeleton, suggesting that they may be more at risk in the coming decades as the oceans change. Interestingly, where ecology requires animals to have strong skeletons - for instance to protect them from impacts from floating ice in Antarctica - skeletons are made thicker and stronger. However, they still form a smaller part of the animal's body mass, because the shape of the species changes to enclose much more body for a given amount of skeleton. Thus life finds a way, but still follows the overall trends of decreasing skeleton size in areas where the ocean chemistry makes it more difficult to obtain the necessary building blocks. If there is time for species to evolve in temperate and tropical regions it is one way they may be able to overcome some of the future effects of ocean acidification."

Dr Sue-Ann Watson, formerly of the University of Southampton and British Antarctic Survey (now at James Cook University) said,

"In areas of the world's oceans where it is hardest for marine creatures to make their limestone shell or skeleton, shellfish and other animals have adapted to natural environments where seawater chemistry makes shell-building materials difficult to obtain. Evolution has allowed shellfish to exist in these areas and, given enough time and a slow enough rate of change, evolution may again help these animals survive in our acidifying oceans."

Athena Dinar | EurekAlert!
Further information:
http://www.bas.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Rain is important for how carbon dioxide affects grasslands
06.03.2019 | University of Gothenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>