Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds energy use in cities has global climate effects

29.01.2013
Researchers find that heat given off by metropolitan areas can lead to continental-scale winter warming in high latitudes

The heat generated by everyday energy consumption in metropolitan areas is significant enough to influence the character of major atmospheric circulation systems, including the jet stream during winter months, and cause continental-scale surface warming in high latitudes, according to a trio of climate researchers that includes Ming Cai, a professor in Florida State University's Department of Meteorology.

Led by Guang Zhang, a research meteorologist at Scripps Institution of Oceanography at the University of California, San Diego, the scientists report in the journal Nature Climate Change that waste heat released in major cities in the Northern Hemisphere causes as much as 1 degree C (1.8 degrees F) of continental-scale winter warming in high latitudes of the North America and Eurasian continents. They added that this effect helps to explain the disparity between actual observed warming in the last half-century and the amount of warming predicted by computer models that only include anthropogenic greenhouse gases and aerosols.

The study, "Energy Consumption and the Unexplained Winter Warming Over Northern Asia and North America," appears in online editions of the journal on Jan. 27. The study was funded in part by the National Oceanic and Atmospheric Administration's Climate Program Office.

Cai, Zhang and Aixue Hu of the National Center for Atmospheric Research in Boulder, Colo., considered the energy consumption — from heating buildings to powering vehicles — that generates waste heat release. The world's total energy consumption in 2006 was 16 terawatts (one terawatt equals 1 trillion watts). Of that, 6.7 terawatts were consumed in the 86 metropolitan areas considered in this study.

"The burning of fossil fuel not only emits greenhouse gases but also directly effects temperatures because of heat that escapes from sources like buildings and cars," Hu said.

The release of waste heat is different from energy that is naturally distributed in the atmosphere, the researchers noted. The largest source of heat, solar energy, warms the Earth's surface. Atmospheric circulations distribute that energy from one region to another. Human energy consumption distributes energy that remained dormant and sequestered for millions of years, mostly in the form of oil or coal. Though the amount of human-generated energy is a small portion of that transported by nature, it is highly concentrated in urban areas.

"The world's most populated metropolitan areas, which also have the highest rates of energy consumption, are along the east and west coasts of the North American and Eurasian continents, underneath the most prominent atmospheric circulation troughs and ridges," Cai said. "The concentrated and intensive release of waste energy in these areas causes a noticeable interruption to normal atmospheric circulation systems, leading to remote surface temperature changes far away from the regions where the waste heat is generated."

The authors report that the influence of urban heat can widen the jet stream at the extratropics, or area outside the tropics. They add that the heating is not uniform. Partially counterbalancing it, the changes in major atmospheric systems cool areas of Europe by as much as 1 degree C, with much of the temperature decrease occurring in the fall.

The study does not address whether the urban heating effect disrupts atmospheric weather patterns or plays a role in accelerating global warming, though Zhang said drawing power from renewable sources such as solar or wind provides a societal benefit in that it does not add net energy into the atmosphere.

Zhang said the climate impact this research studied is distinct from the so-called urban heat island effect, an increase in the warmth of cities compared to unpopulated areas caused by land use changes. Such island effects are mainly a function of the heat collected and re-radiated by pavement, buildings and other urban features.

"What we found is that energy use from multiple urban areas collectively can warm the atmosphere remotely, thousands of miles away from the energy consumption regions," Zhang said. "This is accomplished through atmospheric circulation change."

They also find observational evidence indicates that the waste heat can be the "missing forcing" that would account for the discrepancy between the observed temperature change and that is simulated in computer models forced only by anthropogenic greenhouse gases and aerosols. They suggest that the influence of energy consumption should be considered, in addition to heat-trapping gases and aerosols, as necessary anthropogenic factors in computer models to predict the future climate.

NOAA's mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage the nation's coastal and marine resources.

Ming Cai | EurekAlert!
Further information:
http://www.fsu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>