Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulated deep-sea mining affects ecosystem functions at the seafloor

30.04.2020

Deep-sea mining could provide a way to address the increasing need for rare metals. Its environmental impact is only partially known. In addition, there is a lack of clear standards to regulate mining and set binding thresholds for the impact on the organisms living in affected areas. Researchers at the Max Planck Institute for Marine Microbiology together with colleagues at the Alfred Wegener Institute, the GEOMAR Helmholtz Centre for Ocean Research, and other institutes now describe that deep-sea mining-related disturbances also have a long-term impact on the natural ecosystem functions and microbial communities at the seafloor. They present their results in the journal Science Advances.

Polymetallic nodules and crusts cover many thousands of square kilometres of the world's deep-sea floor. They contain mainly manganese and iron, but also the valuable metals nickel, cobalt and copper as well as some of the high-tech metals of the rare earths.


Undisturbed seafloor with the low manganese nodule density typical for the DISCOL area.

ROV-Team/GEOMAR


Sampling at a 6-year-old plough track.

ROV-Team/GEOMAR

Since these resources could become scarce on land in the future – for example, due to future needs for batteries, electromobility and digital technologies – marine deposits are economically very interesting. To date, there is no market-ready technology for deep-sea mining.

However, it is already clear that interventions in the seabed have a massive and lasting impact on the affected areas. Studies have shown that many sessile inhabitants of the surface of the seafloor depend on the nodules as a substrate, and are still absent decades after a disturbance in the ecosystem.

Also, effects on animals living in the seabed have been proven. As part of the BMBF-funded project “MiningImpact”, the Max Planck Institute (MPIMM) in Bremen has now taken a closer look at the smallest seabed inhabitants and their performance.

What about the smallest inhabitants of the seafloor?

The present study shows that microorganisms inhabiting the seafloor would also be massively affected by deep-sea mining. The team led by Antje Boetius, director at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) and head of a joint research group at MPIMM and AWI, travelled to the so-called DISCOL area in the tropical East Pacific, about 3000 kilometres off the coast of Peru, to investigate conditions of the seafloor as well as the activity of its microorganisms.

Back in 1989, German researchers had simulated mining-related disturbances at this site by ploughing the seabed in a manganese nodule area of three and a half kilometres in diameter with a plough-harrow, 4000 metres under the surface of the ocean.

“Even 26 years after this disturbance, the plough tracks on the seabed were still clearly visible,” reports first author Tobias Vonnahme, who participated in the study as part of his diploma thesis. “And the bacterial inhabitants were also clearly affected.” Compared to undisturbed regions of the seafloor, only about two thirds of the bacteria lived in the old tracks, and only half of them in fresher plough tracks.

The rates of various microbial processes were reduced by three quarters in comparison to undisturbed areas, even after a quarter of a century. “Our calculations have shown that it takes at least 50 years for the microbes to fully resume their normal function,” says Vonnahme.

Dusty and disordered

So deep down and far away from the strong currents on the sea surface, it is not so surprising that even small-scale traces of the DISCOL experiment were still visible. “However, also the biogeochemical conditions had undergone lasting changes,” stresses Antje Boetius. According to the researchers, this is mainly due to the fact that the plough destroys the upper, active sediment layer.

It is ploughed under or stirred up and carried away by the currents. In these disturbed areas, the microbial inhabitants can only make limited use of the organic material that sinks to the seafloor from upper water layers. As a result, they lose one of their key functions for the ecosystem. Microbial communities and their functions could thus be suitable as early indicators of damage to deep-sea ecosystems caused by nodule mining – and of the extent of their potential recovery.

Disturbance in another dimension

All mining technologies for manganese nodules currently being developed will lead to a massive disturbance of the seabed down to a depth of at least ten centimetres. This is comparable to the disturbance simulated here, but in completely different dimensions.

Commercial deep-sea mining would affect hundreds to thousands of square kilometres of seabed per year, while all plough tracks in the DISCOL combined only covered a few square kilometres. The damage to be expected is correspondingly greater, and it would be correspondingly more difficult for the ecosystem to recover, the researchers stress.

“So far, only few studies have dealt with the disturbance of the biogeochemical function of deep-sea floors caused by mining,” explains Boetius. “With the present study, we are contributing to the development of environmental standards for deep-sea mining and pointing out the limits of seabed recovery. Ecologically sustainable technologies should definitely avoid removing the densely populated and bioactive surface layer of the seabed”.

*Joint press release of the Max Planck Institute for Marine Microbiology and the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research*

Wissenschaftliche Ansprechpartner:

Prof. Dr. Antje Boetius
Alfred-Wegener-Institut Helmholtz Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
E-Mail: director@awi.de

Tobias Vonnahme
Current address:
UiT, the Arctic University of Norway, Tromsö, Norway
E-Mail: tobias.vonnahme@uit.no

Dr. Fanni Aspetsberger
Press Officer
Max Planck Institute for Marine Microbiology, Bremen, Germany
Phone: +49 421 2028-947
E-Mail: presse@mpi-bremen.de

Originalpublikation:

T. R. Vonnahme, M. Molari, F. Janssen, F. Wenzhöfer, M. Haeckel, J. Titschack, A. Boetius (2020): Effects of a deep-sea mining experiment on seafloor microbial communities and functions after 26 years. Science Advances. DOI: 10.1126/sciadv.aaz5922

Weitere Informationen:

https://www.mpi-bremen.de/Page4441.html

Dr. Fanni Aspetsberger | Max-Planck-Institut für Marine Mikrobiologie

More articles from Ecology, The Environment and Conservation:

nachricht Road access for all would be costly, but not so much for the climate
10.07.2020 | Potsdam-Institut für Klimafolgenforschung

nachricht Innovative grilling technique improves air quality
01.07.2020 | Fraunhofer Institute for Building Physics IBP

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>