Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Optimize New Space Station Water System

13.11.2008
Two hundred and fifty miles above the Earth puts you a long way from the nearest kitchen tap. And at $10,000 a pint, the cost of shipping fresh water aboard the space shuttle is, well, astronomical.

So astronauts on the International Space Station have to recapture every possible drop. That includes water evaporated from showers, shaving, tooth brushing and hand washing, plus perspiration and water vapor that collects within the astronauts' space suits. They even transfer water from the fuel cells that provide electric power to the space shuttle.

Until now, however, NASA has not attempted to tap one major potential source of water: urine. That will soon change with the deployment of the new Water Recovery System. It departs Friday, Nov. 14, from the Kennedy Space Center on the Space Shuttle Endeavor.

The Water Recovery System, made possible in part by researchers at Michigan Technological University, can transform ordinary pee into water so pure it rivals the cleanest on Earth.

David Hand was the lead researcher on the project, which ran from 1993 to 1997 at Tech. It was a memorable time. "We received jars of sweat from NASA," he said. "Then we did experiments on the system, measured it at every step, evaluated it and made recommendations."

Under the new system, urine undergoes an initial distillation process and then joins the rest of the recovered fluids in the water processor. The processor filters out solids such as hair and lint and then sends the wastewater through a series of multifiltration beds, in which contaminants are removed through adsorption and ion exchange.

"What's left over in the water are a few non adsorbing organics and solvents, like nail polish remover, and they go into a reactor that breaks them all down to carbon dioxide, water and a few ions," said Hand, a professor of civil and environmental engineering.

After a final check for microbes, the water is again clean and ready to drink.

NASA's Layne Carter, the Water Recovery System lead engineer at Marshall Spaceflight Center in Huntsville, Ala., credits Hand and the rest of the Tech research team with making the system as good as it is. "Without a doubt, if it hadn't been for their modeling effort, we never would have been able to redesign the multifiltration beds and achieve that level of efficiency," Carter said. "They did a fantastic job."

Using mathematical models, the Tech researchers helped improve the overall design of the multifiltration beds, The redesigned beds have 30 percent more capacity, which means that NASA doesn't have to send about 60 pounds of additional supplies up to the space station annually. "That may seem trivial, but it saves NASA about $600,000 each year," Carter said.

For more information on the Water Recovery System, visithttp://www.nasa.gov/home/hqnews/2008/may/HQ_08119_ISS_Water_System.html

Contact: David Hand, 906-487-2777, dwhand@mtu.edu; Marcia Goodrich, writer, 906-487-2343, mtunews@mtu.edu

Jennifer Morcone | Newswise Science News
Further information:
http://www.nasa.gov
http://www.mtu.edu

More articles from Ecology, The Environment and Conservation:

nachricht New mathematical model can help save endangered species
14.01.2019 | University of Southern Denmark

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>