Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse gas from English streams

11.12.2007
English chalk streams are less healthy than we thought and are potentially even contributing to global warming, said Dr Mark Trimmer at a Science Media Centre press briefing today.

Dr Trimmer looked at a plant that covers up to three quarters of the surface of some streams and found that it helps methane generated in the sediment beneath the plants to escape into the atmosphere. “We found similar emissions to some UK peat bogs” said Dr Trimmer from Queen Mary, University of London. “This changes our perception of the health of the ecosystem and it indicates another disadvantage of agriculture.”

Over 90% of the methane emissions from the river Frome in Dorset that reach the atmosphere do so via the stems of water crowfoot. The plant also causes a build-up of sediment from neighbouring farmland, which aids the production of methane by bacteria in the stream.

“Chalk streams are a British specialty habitat and a priority under the UK’s Biodiversity Action Plan. They have a high status but there is growing concern about their ecological decline.”

Dr Trimmer estimates that the total area of chalk streams in the UK is around 20 km2. The situation he observed in Dorset is likely to be widespread. More research is needed to understand methane emissions from chalk streams fully. “There is obvious climatic concern for any unquantified potential source of methane.”

Janet Hurst | alfa
Further information:
http://www.sgm.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Urban growth causes more biodiversity loss outside of cities
10.12.2019 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Wie ganze Ökosysteme langfristig auf die Erderwärmung reagieren
10.12.2019 | Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>