Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More comprehensive analysis of Klamath River basin needed to aid decision makers

30.11.2007
2 studies could assist if improvements are made

Two recent scientific studies attempt to better understand the Klamath River basin ecosystem. However, a new report from the National Research Council says for the studies to prove more useful for decision makers, a comprehensive analysis of the basin should be completed to identify all research and management needs. The studies included models that were intended to help reconstruct pre-development flows -- without dams or irrigation -- and to help understand the relationship between flows in the Klamath River and the amount of river habitat available for use by anadromous fishes, which start life in freshwater, migrate to the ocean to grow and mature, and return to freshwater to spawn.

"Science is being done in bits and pieces, and there is no conceptual model that gives a big picture perspective of the entire Klamath River basin and its many components," said William L. Graf, professor of geography at the University of South Carolina, Columbia, and chair of the committee that wrote the report. "As a result, the integration of individual studies -- such as the two examined by the committee -- into a coherent whole has not taken place, and it is unlikely to take place under the present scientific and political arrangements."

The Instream Flow Phase II study (IFS), conducted by Utah State University, modeled and assessed flows in the Klamath River and their relationship to the amount of useable habitat that would be available to coho salmon and other anadromous fishes in the main stem of the Klamath River, downstream from Iron Gate Dam. The Natural Flow of the Upper Klamath Basin study (NFS), conducted by the U.S. Bureau of Reclamation (USBR), estimated flows that would occur if there were no agricultural development or diversion of flows, such as by dams and irrigation, in the upper Klamath River basin. The flow estimates from NFS also served as inputs for IFS. The U.S. Department of the Interior asked the Research Council to review and evaluate the methods and approaches used in the IFS and the NFS and to assess the implications of the studies' conclusions for the basin's anadromous fishes, as well as to identify additional information needed to enhance understanding of the basin ecosystem.

In its review, the committee found that the IFS uses many innovative and cutting-edge methods in modeling the relationship between flows in the Klamath River and the amount of available fish habitat. The committee concluded that the IFS recommendation for increased flows downstream from Iron Gate Dam probably would benefit the river's anadromous fishes in general -- although not necessarily any one species -- by increasing the availability of habitat. The IFS prescribed flow rates would not likely have adverse effects on any of the anadromous fish species, the committee judged.

Despite its strengths, the IFS has several inadequacies -- especially in its use of monthly instead of daily data and its lack of tributary analyses -- which are so severe that they would need to be addressed before decision makers could use the outputs of the study to establish precise flow regimes with confidence, the committee noted. For instance, monthly flow values could mask the effects of flow rates that last only a few days or less, but adverse conditions in that short amount of time could prove detrimental to fish populations. Although the IFS authors recognized that daily flows were more useful, the USBR provided only the monthly flow estimates developed in the NFS.

Furthermore, analyzing the river without considering its tributaries -- which provide essential characteristics and some of the most important habitats in the basin -- is akin to analyzing a tree by assessing only its trunk, but not its branches, the committee stated. The omission of tributary processes apparently resulted from an agreement reached by basin managers to simplify the engagement of stakeholders in the process.

The careful documentation and analysis of the NFS provides a foundation for future studies, gives some basis for understanding unimpaired flows in the basin, and allows a clearer vision of how the parts of the Klamath River basin -- especially areas above Upper Klamath Lake -- interact with each other, the committee said. However, the NFS includes calculated flows that are at best first approximations to useful estimates of flows, and it does not provide enough information for detailed management of flows for the benefit of threatened, endangered, and other anadromous fish species in the Klamath River downstream from Iron Gate Dam.

The most critical shortcomings of the NFS are its inadequate linkages between the Klamath River and Lower Klamath Lake, and the study's production of monthly, rather than daily flows. Additionally, the NFS is compromised by its basic approach to natural flows, choices of the models for calculations, and omissions of factors likely to influence river flows at the Iron Gate Dam gauge site. For example, the NFS does not factor in the role of groundwater, which should be included because groundwater pumping and marsh drainage are common to help meet agriculture needs. Also, the model results indicate that if more water is devoted to agriculture, more water would be returned to the Klamath River. The committee stressed that although such a result is not impossible, it is at least counterintuitive and should be explored and explained completely.

To move forward on science and management in the basin, the committee recommended that key agencies, researchers, decision makers, and stakeholders work together with an independent science review mechanism to define a basin-wide science plan that identifies research and management needs and priorities. If this group determines that the NFS and the IFS could help satisfy science needs in the basin, investigators should improve both studies by using daily flows as a basis for their calculations and by addressing the shortcomings in the studies identified by the committee.

Jennifer Walsh | EurekAlert!
Further information:
http://www.nas.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>