Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major EU project on the CO2 technology of the future

21.11.2007
SINTEF In Norway is to lead the EU’s latest research project on CO2 capture in coal- and gas-fired power stations. The project involves 14 partners from eight different countries, and has a total budget of more than twice the Norwegian parliament’s annual funding for research of this sort.

The EU’s DECARBit project, which will be coordinated by SINTEF Energy Research, will last for four years, with a total budget of NOK 120 million, of which NOK 45 million will go to research at SINTEF and NTNU.

Next-generation technologhy
The project will deal with next-generation technology for CO2 capture from coal- and gas-fired power stations, and will contribute to making future technology very much cheaper than the technology that is available for use today.

DECARBit is the first CO2 handling project in the EU’s 7th Framework Programme for research and development, which was launched in 2007.

Positive confirmation
“The initiative for this project came from us and this shows that we enjoy the confidence of Europe and confirms that SINTEF and NTNU are among the world’s leading centres of research in CO2 handling,” say Nils A. Røkke, SINTEF’s director of gas technology research and NTNU’s Professor Olav Bolland.
Europe boosting R&D in CCS
The news about the EU contract arrived just a week after the proposal for next year’s national budget was presented to the Storting, the Norwegian parliament. The proposal made it clear that the Norwegian government intends to freeze funding for research on CO2 handling at NOK 48.5 million.

“The new EU project is one of several examples of Europe putting significant resources into basic research in this field” say Røkke and Bolland.

In the course of the next six years, the EU will invest no less than €390 million (about NOK 3 billion) in research and development on CO2 capture and storage – so called CCS technologies.

Removes carbon from fuels
The most mature technology for CO2 capture at coal- and gas-fired power stations utilise scrubbing of the flue-gases by means of chemicals to separate CO2.

The EU’s DECARBit project deals with one of several other solutions that could become relevant for the next generation of CO2 capture plants. The project deals with the challenges that arise if we decide to remove the carbon in coal and natural gas fuels before they are sent to the power plant.

Cheaper separation
If a “fuel route” of this sort is chosen, the coal or natural gas will go to the processing plant, which will release a mixture of gases consisting of hydrogen – which will be sent to the power generation plant, CO2 - which will go to storage, and steam.

The EU project will allow the SINTEF and NTNU scientists to contribute to new technology that will cut the costs of separating out the components of the gas mixture.

Anxiety
DECARBit is just the latest in a long series of EU projects that SINTEF and NTNU have joined during the past few years in the field of CO2 handling. SINTEF and NTNU lead five of these projects.

The Norwegian success within the EU research in this topic can partly be attributed to a “national team” spirit. The co-operation with StatoilHydro is important and also the CCS track-record of Norway - most recently added to this is the Snøhvit CCS operation.

“Participating in these projects is important for the research institutes and for the nation as such, in view of the networks that they give us access to. Our worry regarding the stagnating public-sector funding here at home is that we will be unable to carry out essential upgrading of our laboratory facilities. This could make us less competitive in Europe in the future,” say Røkke and Bolland.

Aase Dragland | alfa
Further information:
http://www.sintef.no/content/page3____3200.aspx

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>