Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered weathering process could mitigate global warming

09.11.2007
Researchers invent technology to accelerate Earth's own solution to greenhouse gas accumulation

Researchers at Harvard University and Pennsylvania State University have invented a technology, inspired by nature, to reduce the accumulation of atmospheric carbon dioxide (CO2) caused by human emissions.

By electrochemically removing hydrochloric acid from the ocean and then neutralizing the acid by reaction with silicate (volcanic) rocks, the researchers say they can accelerate natural chemical weathering, permanently transferring CO2 from the atmosphere to the ocean. Unlike other ocean sequestration processes, the new technology does not further acidify the ocean and may be beneficial to coral reefs.

The innovative approach to tackling climate change is reported in the Nov. 7 issue of the journal Environmental Science and Technology by Kurt Zenz House, a Ph.D. candidate in Harvard's Department of Earth and Planetary Sciences; Christopher H. House, associate professor of geosciences at Pennsylvania State University; Daniel P. Schrag, professor of earth and planetary sciences in Harvard's Faculty of Arts and Sciences, professor of environmental science and engineering in Harvard's School of Engineering and Applied Sciences, and director of the Harvard University Center for the Environment; and Michael J. Aziz, Gordon McKay Professor of Materials Science in Harvard's School of Engineering and Applied Sciences.

"The technology involves selectively removing acid from the ocean in a way that might enable us to turn back the clock on global warming -- removing CO2 directly from the atmosphere while simultaneously limiting the rate at which man-made CO2 emissions are acidifying the ocean," Kurt Zenz House says. "Essentially, our technology dramatically accelerates a cleaning process that Nature herself uses for greenhouse gas accumulation."

In natural silicate weathering, atmospheric carbon dioxide dissolves into fresh water, forming a weak carbonic acid. This acid is neutralized as rain water percolates through continental rocks, producing an alkaline solution of carbonate salts. The dissolution products eventually flow into the ocean, where the added alkalinity enables the ocean to hold the dissolved carbon instead of releasing it into the atmosphere. As weathering dissolves more continental rock, more carbon is permanently transferred from the atmosphere to the ocean and ultimately to the sediments.

"In the engineered weathering process we have found a way to swap the weak carbonic acid with a much stronger one (hydrochloric acid) and thus accelerate the pace to industrial rates," Kurt Zenz House says. "To minimize the potential for adverse side effects on the environment we combine it with other chemical processes, the net result of which is identical to the natural weathering process. As a result, the ocean's alkalinity would increase, enabling the uptake and storage of more atmospheric CO2 in the form of bicarbonate, the most plentiful and innocuous form of carbon already dissolved in the earth's waters. That means we may be able to safely and permanently remove excess CO2 in a matter of decades rather than millennia."

Unlike other climate engineering schemes that propose reflecting sunlight back into space to cool the planet, the weathering approach counteracts the continued ocean acidification that threatens coral reefs and their rich biological communities. Moreover, the process works equally well on all sources of CO2, including the two-thirds of human emissions that do not emanate from power plants, and could be run in remote locations and powered by stranded energy, such as geothermal and flared natural gas.

The team cautions, however, that while they believe their scheme for reducing global warming is achievable, implementation would be ambitious, costly, and would carry some environmental risks that require further study. Replicating natural weathering would involve building dozens of facilities, akin to large chlorine gas industrial plants, on coasts of volcanic rock.

"The least risky trajectory is to significantly cut our carbon dioxide emissions -- but we may not be able to cut them rapidly enough to avoid unacceptable levels of climate change," says Aziz. "If it looks like we're not going to make it, the 'House Process' has the potential to let us rescind a portion of those emissions while mitigating some of the chemical impacts the excess CO2 will have on the oceans. It won't be ready in time, though, if we wait until we're sure we'll need it before pursuing R&D on the technical and environmental issues involved."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Ecology, The Environment and Conservation:

nachricht Marine oil snow
12.06.2019 | University of Delaware

nachricht Climate driving new right whale movement
29.05.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>