Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nottingham scientist fights climate change

16.02.2007
A University of Nottingham scientist has won a Royal Society award for his innovative work to combat climate change.

Dr George Chen received the prestigious award at a ceremony in London to recognise scientists who are helping to put the UK at the forefront of the battle against global warming.

His pioneering work, which is developing ways of taking carbon dioxide (CO2) out of the atmosphere, could play a key role in future efforts to reduce global climate change. His research could also reduce the need to store highly pressurised CO2 underground.

Carbon abatement technologies, including carbon capture, storage and long-term utilisation of CO2, will play a vital role in revolutionising energy use worldwide. The University of Nottingham has a broad range of internationally-recognised research programmes in this field, and launched the Energy Technologies Research Institute in November 2006 to bring together top academics and industrial partners.

The award made to Dr Chen was part of the Royal Society’s ‘Labs to Riches’ event, which encourages innovation in science and technology and promotes its commercial application.

Dr Chen, of The University of Nottingham’s School of Chemical, Environmental and Mining Engineering, said: “It is a great honour for me to receive this prestigious award from the Royal Society.

“I see this award as an authoritative recognition of our research in CO2 mitigation. It has certainly stimulated my whole research group at Nottingham and we are really looking forward to demonstrating the feasibility of this approach.”

The awards were made at a gala dinner at the Royal Society’s headquarters in London on February 15, presented by Sir David Wallace, Vice President and Treasurer of the Royal Society.

Dr Chen won the Brian Mercer Award for Feasibility, which is given to allow researchers to investigate the technical and economic feasibility of commercialising an aspect of their scientific research. The awards were established by a generous bequest from the late Brian Mercer OBE FRS.

The accumulation in the Earth’s atmosphere of ‘greenhouse gases’ such as CO2 is widely blamed for global warming. Greenhouse gases, generated by the burning of fossil fuels and other human activities, are so-called because they trap more of the Sun’s heat — leading to the temperature increases associated with climate change.

Martin Rees, President of the Royal Society, said: “Tackling global warming is not only a moral imperative but it is also an economic one.

“Britain has some of the best scientists in the world and we need to make the most of them. All of the award winners have the potential to change how we live and to make a serious contribution to the UK’s economy.”

The Royal Society is an independent academy promoting the natural and applied sciences. Founded in 1660, its objectives are to strengthen UK science by providing support to excellent individuals, and to fund excellent research that pushes back the frontiers of knowledge.

Other winners of this year’s awards include UK scientists developing research into more efficient solar energy production, and a team looking at a removal and recycling system which consumes less than five per cent of conventional processes.

Tim Utton | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>