Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water pollutants purged

04.02.2002


Glowing catalyst can spot one part pollutant per million of water
© PhotoDisc


Smart process cleans up contaminated water.

A smart material identifies and destroys toxic pollutants in water. When exposed to the offending molecules, tiny light-emitting zinc oxide particles glow dimly, burn them up, and glow brightly to show they’ve finished1.

The advantage of such an approach, say Prashant Kamat and co-workers at the University of Notre Dame in Indiana, is that the energy-consuming burn-up stage switches on only when pollutants are present.



Kamat’s team is training its cross-hairs on organic aromatic pollutants such as chlorinated phenols. These are used as wood preservatives and pesticides, and are often the by-products of paper pulp milling.

Polychlorinated biphenyls (PCBs) are related substances that are widespread contaminants in industrialized nations. They are used to manufacture paints, plastics, adhesives and electrical goods, and as hydraulic and cooling fluids. Municipal incinerators produce similar chlorinated aromatic compounds called dioxins.

All these chemicals are toxic in high doses, and are possibly carcinogenic.

One widely studied new method for decontaminating water is photocatalytic oxidation: the burning-up of organic molecules in air, stimulated by a light-sensitive catalyst. The most common catalyst in these studies (which have not yet delivered a commercial process) is titanium dioxide.

Zinc oxide might prove more versatile, the Notre Dame group thinks. It destroys organic molecules in much the same way as titanium dioxide, but can also sense the presence of these compounds in the first place.

Zinc oxide is fluorescent: it absorbs ultraviolet light and re-emits the energy as green light. This light level falls by 15% when zinc oxide is exposed to just one part per million of chlorinated aromatic molecules - a few drops in a bath of water.

When such a solution is exposed to strong UV irradiation, a film of zinc oxide particles reacts with the organic molecules, converting them to harmless substances. After several hours of irradiation, the film’s fluorescence increases, because there is less chlorinated compound left.

In a water-purification system, this brightening green light could signal that most of the contaminant has been destroyed, triggering a shutdown of the ultraviolet irradiation.

Whether such a system will be commercially viable depends on whether the contaminants can be removed efficiently and quickly enough.

References

  1. Kamat, P. V., Huehn, R. & Nicolaescu, R. A ’sense and shoot’ approach for photocatalytic degradation of organic contaminants in water. Journal of Physical Chemistry B, 106, 788 - 794, (2002).


PHILIP BALL | © Nature News Service

More articles from Ecology, The Environment and Conservation:

nachricht Sinking groundwater levels threaten the vitality of riverine ecosystems
04.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Protecting our climate, the environment and nature is the focus of a new communications project
04.10.2019 | IDEA TV

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers watch quantum knots untie

After first reporting the existence of quantum knots, Aalto University & Amherst College researchers now report how the knots behave

A quantum gas can be tied into knots using magnetic fields. Our researchers were the first to produce these knots as part of a collaboration between Aalto...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Composite metal foam outperforms aluminum for use in aircraft wings

23.10.2019 | Materials Sciences

Researchers watch quantum knots untie

23.10.2019 | Physics and Astronomy

A technology to transform 2D planes into 3D soft and flexible structures

23.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>