Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT researchers seed, heat and grow carbon nanotubes in long tubing

07.08.2006
In less than 20 minutes, researchers at New Jersey Institute of Technology (NJIT) can now seed, heat and grow carbon nanotubes in 10-foot-long, hollow thin steel tubing.

"The work took us three years to develop and get right, but now we can essentially anchor nanotubes to a tubular wall. No one has ever done anything like this before," said lead researcher Somenath Mitra, PhD, professor and acting chair of NJIT's Dep't of Chemistry and Environmental Science. Graduate and post-doctoral students who worked on the project are Mahesh Karwa, Chutarat Saridara and Roman Brukh.

The ground-breaking method will lead to improvements in cleaner gasoline, better food processing and faster, cheaper ways to clean air and water.

The discovery was recently described in the Journal of Material Chemistry, June 14, 2006, by Mitra and his team in "Selective Self-assembly of Single Walled Carbon Nanotubes in Long Steel Tubing for Chemical Separation." Other journals featuring their work are Chemical Physics Letters and Carbon and Analytical Chemistry.

A carbon nanotube is a molecular configuration of carbon in a cylindrical shape. The name is derived in part from the tube's miniscule size. Scientists estimate nanotubes are 50,000 times smaller than a human hair.

Until recently researchers have relied on the nanotubes which researchers purchase as a powder. The nanotubes are said to have remarkable, if not almost magical, properties. For example, by simply mixing the powder with polymers or chemicals, films and composites can be made.

However, the method has drawbacks. "We have never been able to anchor the powder to a large surface, nor can we grow the nanotubes in a large device. Typically we could only produce them in minute amounts, if we used the powder substance," said Mitra. Now everything has changed.

Using a catalyst either prepared on the steel surface or enabled by a chemical deposition process, the NJIT inventors have created nanotubes which can stick to the walls of narrow or wide tubes. And, they can grow considerably larger amounts of them, making the process more attractive and viable for industrial usages.

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>