Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First global bird map provides new clues to future extinctions

20.06.2006
The first global survey of bird diversity could play a key role in identifying species most vulnerable to extinction, researchers report today in the journal PLoS Biology.

The study reveals a direct link, previously theorised but never proven on a global scale, between the size of the geographical range that a species inhabits and regional variations in extinction risk and biodiversity. The international team hopes this new ability to plot patterns on a global scale will enable conservationists to predict and even slow or reverse future extinctions.

The new data provides the first strong evidence that species’ range areas are smallest in the tropics and larger in temperate and polar regions. A smaller range area means that many different types of creature can be accommodated in the same space, explaining why regions such as the Amazon Basin contain such a rich variety of species. Conversely, temperate areas contain a smaller number of different species since large range areas mean fewer species can co-exist.

This in turn has important implications for extinction risks. The team has shown that species with a smaller range size are at a greater risk of extinction, probably due to their increased vulnerability to events that could change or destroy their habitat. A larger range size, on the other hand, means fewer species but larger populations of those that exist, making it less likely that the whole population can be wiped out by events such as tornados. Lead researcher Professor Ian Owens of Imperial College London's Division of Biology says:

“There are marked variations in biodiversity and extinction rates in different parts of the world, and why this should be has been a big area of research and debate. Theories have pretty much all rested on the core assumption that range size is the key, but until now tests have proved inconclusive due to a lack of global data. This is really a huge step forward in understanding ecology on a world-wide level and hopefully will allow real results in protecting species that we are in danger of losing.”

Researchers have previously thought that range size varied on a latitudinal basis, declining from the largest in the northern hemisphere to the smallest in the southern. The team’s work has revealed a much more complex situation, says Professor Owens, with different patterns emerging globally. He adds:

“We’ve found that the patterns seen in the well-studied northern regions can’t be assumed to apply to the rest of the world - a global perspective is needed. This means that conservation can’t be planned on a one-size-fits-all basis and we will have to properly understand how different micro-ecologies work in order to really make a difference. Our next task is to test whether our findings in birds are replicated in other types of organism.”

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>