Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug discovery team to explore newly discovered deep-sea reefs

23.05.2006


From May 22-30, Harbor Branch scientists, along with colleagues from the University of Miami, will use the Harbor Branch Johnson-Sea-Link II submersible to explore for the first time newly discovered deep-sea reefs between Florida and the Bahamas. The reefs were discovered in 2,000 to 2,900 feet of water last December by a University of Miami team using advanced sonar techniques. A primary goal of the upcoming expedition, which is funded largely by the State of Florida’s "Florida Oceans Initiative," will be to search for marine organisms that produce chemical compounds with the potential to treat human diseases such as cancer and Alzheimer’s.



"We’ve found incredible and surprising diversity at other deepwater reefs near Miami and Bimini, and some promising potential disease treatments, so we’re very excited about the chance to explore these new areas," says Amy Wright, director of the Harbor Branch Division of Biomedical Marine Research.

Researchers have suspected since the 1970s that deep reefs lay undiscovered between Miami and Bimini because pieces of reef-building corals had been brought up using surface-operated dredge and grab sampling equipment. However, just as the vast majority of the ocean remains poorly mapped and unexplored--even off Miami--these potentially important areas remained unseen.


In December of 2005, as part of the National Oceanic and Atmospheric Administrations Ocean Exploration program, University of Miami researchers, led by geophysicist Mark Grasmueck and geologist Gergor Eberli, began mapping deepwater habitats off Miami and Bimini using an autonomous underwater vehicle (AUV) equipped with advanced sonar technology. AUVs operate without a tether to the surface and are pre-programmed to independently perform tasks. AUVs have been frequently used in oil exploration and also in a variety of other research programs for mapping purposes, but the Miami researchers believe this is the first time an AUV has been used to map deepwater coral reefs.

Miami’s December AUV work revealed what appears to be an extensive system of steep slopes and mounds as high as 350 feet, all of which are likely to harbor a wide array of sponges, corals, fish, and other animals. A camera developed at the University of Miami allowed researchers to get an enticing glimpse of the bottom, but until researchers make it to the seafloor in the submersible they will not be able to determine the extent and biological diversity of the newly discovered reefs. Harbor Branch has discovered a number of other new deepwater reefs in Florida waters in recent years that play important ecological roles, but has never before had the chance to explore this area.

From May 22-26, the team will be working at sites on the Bahamas side of the Straits of Florida, about 10 miles from Bimini. From May 27-30 they will be on the Florida side, beginning about 20 miles out from Miami, though all the reefs are part of the same geological system. After a quick personnel and equipment turnaround, Harbor Branch researchers will return to the Miami area on a separate expedition from May 31 to June 9 to conduct the first in depth survey of deep reef areas in the region to better assess the ecological importance of the reefs and to identify factors responsible for their incredible diversity.

Researchers typically have to spend hours using a ship depth sounder to map an area before determining where to do submersible dives because maps detailed enough to show the telltale mounds and other features of deepwater reefs simply do not exist for the bulk of the seafloor. With such little information available, Grasmueck compares typical seafloor exploration to arriving on the bottom of the Grand Canyon at night with a flashlight and then attempting to ascertain the significance and topography of the whole canyon based on small swaths revealed by the flashlight. The Miami AUV work has instead made it possible to choose dive sites likely to be vibrant reef areas ahead of time, all with an understanding of the full system being explored.

The expedition will have two main goals. First, the team will use the submersible to explore those seafloor areas that appear most promising based on their sonar map contours. As this "ground truthing" work progresses, the team will be able to better predict correlations between map data and biodiversity on the bottom. Ultimately this will allow them to more accurately assess the ecological importance of the entire area, not just those small swaths observed from the submersible.

During each submersible dive, Harbor Branch experts will be collecting samples of organisms such as sponges and corals that will be tested to determine if they, or microorganisms living within them, produce chemicals with pharmaceutical potential. A key goal is to find and collect organisms that have never been seen, which happens on almost every one of the Harbor Branch team’s expeditions. Other organisms will also be collected because even well known species can produce different and potentially important chemicals depending on the depth, temperature, and location at which they are found.

Harbor Branch’s quest for drugs from the sea began in the early 1980s and has led to the collection of tens of thousands of marine organism samples and the identification of a number of promising potential drugs now in various stages of development for treating cancer, Alzheimer’s, malaria, AIDS and other ailments.

Mark Schrope | EurekAlert!
Further information:
http://www.hboi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

Researchers discover link between magnetic field strength and temperature

21.08.2018 | Physics and Astronomy

IHP technology ready for space flights

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>