Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Incineration as a fuel source

03.03.2006


Enormous benefit for humans and without harming the environment can be extracted from domestic waste, old car wheel casings, industrial wastes and even silt, that remain after cleaning sewage outflows. It transpires that all this can successfully be turned into light and heat when incinerated, under methodology, developed by scientists from Chernogolovka in the Moscow Region, staff from the Institute of Problems of Chemical Physics RAS. The scientists were aided by the International Science and Technology Centre and the Russian Fund for Fundamental Research. The research is headed by RAS Corresponding Member Georgi Manelis.



This technology has a rather complicated name – filtration combustion with superadiabatic warm-up. The essence of the development lies in the fact that all of the so-called pseudo-fuel is first transformed to gas in an airflow; then this gas is combusted. As a result we get the same light and heat for which to date it has been necessary to literally let natural gas, coal and oil go up in smoke, fuel reserves which are far from endless in supply.

Externally the main part of the installation is a vertical shaft furnace, filled with these waste products that have to be processed. From below the pipe is blasted with air. This is where the ash is poured in – the mineral residue that does not burn at all. From above, as necessary, new portions of what in a domestic sense you would not call fuel are added into the pipe; these include poor coal, for example, in which there is so little carbon that you cannot make then burn easily.


The particular feature of the installation is that the walls of the shaft furnace, the gasifier, do not allow even a little of the heat obtained from the combustion of the waste to disperse into the surrounding space. From below the front of smouldering rather than burning, air blows heated ash onto the lower sections of the pipe. As a result the temperature of the process becomes pretty high, superadiabatic, meaning it is greater than under regular heating in a closed space. And now it is sufficient for all the compounds which contain carbon atoms to either burn or be subjected to pyrolysis, as if splitting into pieces, which is what happens if there is insufficient oxygen for combustion. The soot from burning car wheel casings that we all know well are indeed the very same products of this pyrolysis; only in the installation devised by the scientists, they enter at the second stage of the reprocessing.

Thus, at the first stage gasification takes place in superadiabatic regime; in other words, the transformation of carbon-containing wastes into so-called generating gas. The molecules that make it up store a fair amount of heat and the non-combustible slag has already poured into the bottom of the furnace. A gas like this will combust wonderfully in a power-generating installation, giving the much needed heat and electricity.

“Our method has very high performance efficiency, almost 95%, and a record high ecological cleanliness,” explains Candidate of Physics and Mathematics Valery Steinberg, Head of Department of Combustion and Detonation of the Institute Problems of Chemical Physics RAS, where the basis of the technology was created. Such incineration, performed in phases, and the high temperatures facilitate the practical suppression of the formation of dioxins. Their content in the furnace gases, without any additional purification, amounts to ten-thousandths of a microgram per cubic metre of smoke; an excellent figure.”

What is also surprising is that the method is incredibly non-demanding in terms of the primary fuel. Naturally, the air supply regime and certain other parameters have to be selected for each specific type of waste that predominates in the combustible mass. However, under the new technology, almost everything burns: domestic rubbish, oil slime and oil-refinery wastes, wheel casings, plastic, just as wastes from the coal mining and coal refinery, pulp and paper, chemical and paint-varnish industries, providing us with heat and with light.

Andrew Vakhliaev | alfa
Further information:
http://tech-db.istc.ru/istc/sc.nsf/events/fuel-source

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>