Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitoring Baleen Whales with Autonomous Underwater Vehicles

23.02.2006


The glider on the ocean surface before it descends to begin a mission. (Photo courtesy Mark Baumgartner, Woods Hole Oceanographic Institution)


Mark Baumgartner checks computer data during 2005 field studies. (Photo by Amy Nevala, Woods Hole Oceanographic Institution)


First passive recordings from ocean gliders provide insight into whale behavior for some endangered species

Like robots of the deep, autonomous underwater vehicles, or AUVs, are growing in number and use in the oceans to perform scientific missions ranging from monitoring climate change to mapping the deep sea floor and surveying ancient shipwrecks. Another use for these versatile platforms has now been found: monitoring the lives of whales.

Marine mammals are major predators in the ocean, but little is known about many of them and how changing ocean conditions affect their distribution. Traditional ship or aerial surveys rely on human observers to detect marine mammals, but these observations are limited to daylight hours and periods of calm seas and good visibility. As a result, these surveys are time-consuming, inefficient, and expensive. Marine mammals can also be detected by passively listening for their vocalizations. Passive acoustic monitoring of marine mammals is unaffected by weather, but most applications to date have involved moored or fixed recorders that can assess only when marine mammals appear in a single location.



Scientists at the Woods Hole Oceanographic Institution (WHOI) have reported the first use of passive acoustic recorders in an ocean glider, a type of AUV that looks like a large model airplane and can work in water depths to 1,000 meters (about 3,300 feet) or more.

Gliders move both horizontally and vertically in the ocean and work around the clock in all weather conditions, typically up to a month or longer depending on the project. The vehicle carries a variety of high-resolution sensors to collect oceanographic measurements such as temperature, salinity, and fluorescence (a measure of phytoplankton abundance). Gliders also operate silently, which make them ideal for passive acoustics studies. Researchers say the gliders are a promising, cost-effective, and efficient alternative to long-term ship-based studies given ship costs in the thousands of dollars a day.

Mark Baumgartner, an assistant scientist in the WHOI Biology Department, reported findings from a pilot study involving the deployment of recorder-equipped gliders today at the biennial Ocean Sciences Meeting in Honolulu, Hawaii. Baumgartner said vocalizations of baleen whales, including right, sei, and humpback whales, could be heard on all of the glider recorders during the five-day project conducted in 2005 off the coast of Cape Cod, Massachusetts.

The WHOI team custom built digital audio recorders, installed them inside the gliders, and then deployed the gliders near an aggregation of right and sei whales. A gale moved through the area just after the gliders were deployed bringing high winds and 17 foot seas that made traditional ship-based marine mammal observations impossible. In contrast, Baumgartner said the gliders operated “flawlessly”, collecting data continuously through the gale.

Baumgartner and colleagues have found a close correspondence between changes in the rate of sei whale calls and changes in the near-surface abundance of copepods, the sei whale’s primary prey. The copepods, a tiny shrimp-like animal, were observed with an echosounder on the glider. According to the scientists, the changes in abundance were a result of the copepods’ daily migration from the surface to the bottom at dawn and from the bottom to the surface at dusk.

“We speculate that sei whales only feed on the copepods at night when the copepods are near the surface,” he said at a news conference on new platforms for ocean measurements. “During the day, when the copepods are near the sea floor, sei whales vocalize more while socializing or feeding on other prey.”

Baumgartner said the long-term goal is to study where marine mammals go and what they do over time scales of weeks to months using unmanned survey vehicles like gliders that are capable of collecting both acoustic recordings and oceanographic measurements. “Our five-day pilot project clearly demonstrated that gliders can be used to collect high quality acoustic measurements. We are now working to extend the capabilities of the acoustic system to investigate baleen whale habitat in ways that have not been possible until now.” The scientists are currently focusing on baleen whales because they are endangered and at particular risk from fishing gear entanglements and ship strikes.

Future work will focus on extending the duration of the recordings, developing a capability to report detections of whale vocalizations to land-based researchers in real time, and monitoring the high-frequency vocalizations of other marine mammals, such as dolphins, sperm whales, and beaked whales.

Funding for this pilot project was provided by the WHOI Ocean Life Institute and the U.S. Office of Naval Research.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu
http://www.whoi.edu/mr/pr.do?id=10547

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>