Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Portable sampling cart monitors emissions from wood-burning cookstoves

16.12.2004


A new method of measuring emissions from cookstoves could help improve human health and enhance the accuracy of global climate models.



Wood-fueled cooking stoves are commonly used in Central America and other Third World nations. Producing copious amounts of noxious smoke, the stoves can be detrimental to human health. Lack of knowledge about the characteristics and quantities of emissions from millions of these modified campfires is a major contributor to uncertainties in global emission inventories of particulate matter.

To improve the measurement and characterization of emissions from wood-fueled cookstoves, researchers at the University of Illinois at Urbana-Champaign have designed and built a portable, battery-operated sampling cart. The inexpensive and mobile monitoring system can be taken to remote locations to better evaluate emission sources.


"We have established working relationships with non-profit organizations in the United States and in developing countries that afford us access to ongoing measurements of both traditional and improved wood-burning cookstoves," said Tami Bond, a professor of civil and environmental engineering. "These partnerships form the foundation for achieving a positive impact on both human health and the environment."

In the past, field measurements were difficult to obtain for many reasons, including limited access to remote sites and the lack of power to operate equipment. While cooking fires have been replicated and measured in laboratory settings, the results may not represent actual cooking practices.

"To be accurate, we really need to measure while food is being cooked," said graduate student Christoph Roden. "We need to record how much fuel is consumed, and we need to examine the type, size and condition of the wood that is burned."

The sampling cart carries sensors for measuring carbon dioxide and carbon monoxide, a particle soot absorption photometer for measuring particle color, a nephelometer for measuring particle concentration, and two filters for collecting particles for later analysis. A battery-operated power supply and data-acquisition system complete the design.

In collaboration with two nonprofit agencies -- Trees, Water and People (based in the United States) and AHDESA (the Honduran Association for Development) -- Bond and Roden took their sampling cart to Honduras, where for two weeks they measured emissions from a number of traditional cookstoves. The researchers are now comparing their field measurements with previous laboratory studies, and examining the implications upon human health and global climate modeling.

"Scientists have been assuming certain properties of particles based on testing performed in laboratories," Roden said. "We are finding, however, that the properties really depend upon the conditions under which the wood is burned, and those properties in turn affect the climate differently."

Particle characteristics depend, for example, upon whether the fire is flaming or smoldering. Wood size also makes a big difference. Because larger pieces don’t heat up as fast, more volatile material can be released over longer periods. The bottom line, Roden said, is that not much testing has been performed on the kinds of traditional technology that emit most of the particles in the atmosphere. Much more work needs to be done.

"This was a pilot program and provided a baseline study on emissions," Bond said. "Improved, fuel-efficient and pollutant-reducing cookstoves have been developed and are being distributed throughout villages in Honduras by the nonprofits that we work with. We will return next summer to measure and compare the emissions from the new stoves."

The researchers described their sampling cart and presented early results at the American Geophysical Union meeting in San Francisco.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>