Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alaska scientists find Arctic tundra yields surprising carbon loss

27.09.2004


Carbon loss from soils exceeds storage by plants

Institute of Arctic Biology (IAB) ecologists Donie Bret-Harte and Terry Chapin and colleagues working in northern Alaska discovered that tundra plants and soils respond in surprisingly opposite ways to conditions that simulate long-term climate warming.
Their findings are published in the September 23, 2004 edition of the leading science journal Nature and are featured in the journal’s News and Views section.


Bret-Harte, Chapin, lead author Michelle Mack of the University of Florida, Gainesville, and colleagues set out to investigate whether the commonly held assumption that a warming climate will lead to bigger plants that can store more carbon and thereby reduce atmospheric carbon dioxide was indeed a silver lining in the global warming cloud that some people had hoped for.

Apparently not.

"The broadest implication of this research is that climate warming could lead to a much greater release of carbon dioxide to the atmosphere and a greater positive feedback to further warming than we originally thought," Bret-Harte said.

In the experiment, conducted at IAB’s Toolik Field Station, researchers measured the amount of carbon and nitrogen in plants and soils from plots of tundra that have been continually fertilized since 1980 – a condition thought to simulate the increased nutrient availability expected as a result of a warmer climate. The plots are part of a 20-plus-year project by Terry Chapin of IAB, and Gus Shaver of The Ecosystems Center at the Marine Biological Laboratory in Massachusetts. "One of the greatest values of IAB’s Toolik Field Station is that it provides opportunities for long-term uninterrupted research in a pristine environment. We could never have gotten the results we did without such a long-term experiment," said Bret-Harte.

"The connection between fertilization and warming is that warmer temperatures should stimulate decomposition of dead plant material, releasing carbon to the atmosphere and nitrogen to plants. Nitrogen limits plant growth in most terrestrial ecosystems, said Bret-Harte" "What’s really surprising about this result is that we didn’t expect that this big loss of carbon from the soils would be stimulated by nitrogen alone. Everyone had assumed increased decomposition would be caused by increased temperatures, and the main effect of increased nitrogen would be to stimulate plant growth and store more carbon. We expected that fertilization by itself would lead to increased carbon storage." "Instead, nitrogen seems to stimulate decomposition and promote carbon dioxide release to the atmosphere from the soils," Bret-Harte said.

The researchers found that although the aboveground portion of tundra plants doubled their productivity under fertilization and, as expected, stored more carbon, the losses of carbon and nitrogen from the deep-soil layers was substantial and more than offset the increased carbon stored in the aboveground plants and plant litter.

Because more than one-third of the world’s soil carbon is stored in northern ecosystems – boreal forest and Arctic tundra – and is equivalent to two-thirds of the carbon found in the atmosphere, the loss of deep-soil carbon could mean an even greater increase in atmospheric carbon dioxide concentrations than is caused by fossil fuel burning. "The paradigm is that decomposers (microbes) are always limited by carbon availability and almost never limited by nitrogen availability, but this project suggests that we don’t understand decomposition as well as we thought we did. Better understanding of decomposition is necessary to be able to predict what will happen with climate warming in northern ecosystems."

Marie Gilbert | EurekAlert!
Further information:
http://www.uaf.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>