Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic Coring Expedition (ACEX) retrieves first Arctic core

26.08.2004


IODP team succeeds in recovering sub-seafloor sample



The first 40 million years of Arctic climate history have been recovered from beneath the Arctic seafloor this week. After four days of working in hazardous conditions, the Integrated Ocean Drilling Program’s (IODP) Arctic Coring Expedition (ACEX) retrieved 272 meters of core. Extreme sea ice then forced the ship to abandon its position.
Coring of the Arctic’s first scientific borehole--located roughly 145 miles (233 kilometres) from the North Pole--was interrupted when very thick, moving ice floes threatened the expedition’s safety. Even one of the world’s most powerful ice breakers, the Russian Sovetskiy Soyuz, employed to protect the coring ship from harsh Arctic elements, could not safeguard operations at the initial coring site.

As the expedition team searches for another favorable site from which to core, scientists on board the Vidar Viking have examined microfossils in the retrieved core. Initial analyses suggest that some of the material in the core’s sediments could be 40 million years old--originating in the Middle Eocene period. The expedition’s co-chief scientist, Professor Jan Backman of the University of Stockholm, exclaims, "This is very exciting. For the first time, we are beginning to get information about the history of ice in the central Arctic Ocean." He adds, "This core goes back to a time when there was no ice on the planet--it was too warm. It will tell us a great deal about the climate of the region. It will tell us when it changed from hot to cold, and hopefully, why." Prof. Backman explains that in prehistoric times, life in the Arctic Ocean was much different than today. In warmer conditions and free from ice, marine life thrived. The retrieved Arctic sediments will indicate the type and abundance of marine creatures that lived here back then. The cores were raised from sea depths of about 600 meters, coring depths formerly unmatched in Arctic waters.



The six-week Arctic Coring Expedition (ACEX) is an inaugural effort of the Integrated Ocean Drilling Program (IODP), a program of scientific discovery sponsored by 16 countries, funded by the U.S. National Science Foundation, the Japanese Ministry of Education, Culture, Sports, Science and Technology, and the European Consortium for Ocean Research Drilling. IODP expeditions explore Earth’s history and structure by collecting and studying sediments and rocks beneath the sea floor, using technologically advanced ocean-drilling techniques. The program, overseen by Integrated Ocean Drilling Program Management International (IODP-MI) with offices in Sapporo, Japan, and Washington, DC, coordinates all program planning, administration, and educational outreach. IODP-MI seeks to maximize the program’s scientific output, involve the broadest scientific population in its implementation, and stimulate community interest and involvement in all IODP discovery activities.

Eva Grönlund | EurekAlert!
Further information:
http://www.polar.se
http://www.iodp.org

More articles from Ecology, The Environment and Conservation:

nachricht Northeast-Atlantic fish stocks: Recovery driven by improved management
04.02.2019 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht New mathematical model can help save endangered species
14.01.2019 | University of Southern Denmark

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>