Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Testing soil for contamination

13.05.2004


Throughout Europe the recovery of abandoned land known as ‘brownfield sites’ is becoming increasingly important. Former industrial or commercial properties where operations may have resulted in environmental contamination, they often impose environmental, legal and financial burdens on the surrounding communities. Left vacant, contaminated sites can threaten the economic viability of adjoining properties.



One obstacle to their re-use is the uncertainty over how blighted the land is, and stakeholders such as local government agencies, industrial owners and developers often hesitate to check this, as current testing methods are time-consuming, inconclusive and expensive.

The UK, Irish, Portuguese and Swedish partners in the EUREKA project E! 2678 SS TESTER have developed a unique, hi-tech, low-cost instrument that can provide prospective buyers with an inexpensive, diagnostic tool for the rapid screening of soils. This will facilitate the clean up and re-use of such land, which will bring viable businesses into a community and increase employment opportunities.


“The prototype SST (Safe Soil Tester) is a robust, portable instrument that employs bioluminescent bacteria for the detection of toxic contamination,” explains Ed Bell, MD of the UK lead partner, Crown Bio Systems. “It is easy to use, can test soil and sediment, and is ideal for rapid screening of land for pollutants providing instant results saving lab time and costs.”

The tester harnesses the Eignos navigation system, and in future will use the new Galileo navigation system just launched by the European Space Agency to integrate highly accurate satellite positioning data with the real?time results. Not only does this provide essential georeferencing data to create an auditable trail, but it can also be integrated with GIS (geographic information system) data.

“The tester will increase the likelihood of testing being done on a site that is suspected of contamination,” says Jim Arigho, Business Development Manager of Atlas Ireland. “It can identify hotspots and clean areas, saves time by allowing the extension of the sampling regime at very low cost, and makes it possible to make accurate decisions on the spot.”

The project is expected to be completed in 2004 at a cost of € 4.3 million (£3 million). Global markets are estimated to be €10 billion and work has already started to apply the technology to other diagnostic problems. “We have already embarked on a biosensor for applications in the food and drug development sectors,” says Bell.

"EUREKA was a hugely useful initiative for us. Without it, we just could not have accessed the complementary expertise required to deliver the project.”

Julie Sors | alfa
Further information:
http://www.eureka.be/success-stories

More articles from Ecology, The Environment and Conservation:

nachricht Project provides information on energy recovery from agricultural residues in Germany and China
13.02.2020 | Deutsches Biomasseforschungszentrum

nachricht New exhaust gas measurement registers ultrafine pollutant particles for the first time
21.01.2020 | Technische Universität Graz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>