Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nasa Satellites And Balloons Spot Airborne Pollution "Train"

04.05.2004


NASA scientists discovered pollution could catch an airborne "express train," or wind current, from Asia all the way to the southern Atlantic Ocean.


RIDING THE POLLUTION TRAIN

The red arrows on this globe trace the fast track of ozone pollution from Asia as it contributes to the highest ozone episodes found in the South Atlantic. Asian smog with moderate amounts of ozone moves south into the Indian Ocean. Repeatedly, every few weeks, when this ozone can be swept upwards by tall rainclouds, it can then move eastward rapidly across Central Africa (upper arrow). The long red path is shown to end at Ascension Island, but actually a large patch of ozone fills much of the South Atlantic. Additionally, lightning and vegetation burning over Africa could add highly visible "pollution peak" features, but these obvious nearby African sources tell only half the story of the Atlantic ozone episodes. CREDIT: NASA, MODIS image


AN OZONESONDE AND BALLOON

Anne Thompson (NASA, left) and Agnes Phahlane (South African Weather Service, right) prepare to launch a balloon carrying an ozonesonde, a sensor that measures ozone. CREDIT: NASA



Scientists believe during certain seasons, as much as half of the ozone pollution above the Atlantic Ocean may be speeding down a "train" track of air from the Indian Ocean. As it rolls along, it picks up more smog from air peppered with thunderstorms that bring it up from the Earth’s surface.

Bob Chatfield, a scientist at NASA’s Ames Research Center, Moffett Field, Calif. said, "Man-made pollution from Asia can flow southward, get caught up into clouds, and then move steadily and rapidly westward across Africa and the Atlantic, reaching as far as Brazil."


Chatfield and Anne Thompson, a scientist at NASA’s Goddard Spaceflight Center, Greenbelt, Md., used data from two satellites and a series of balloon-borne sensors to spot situations when near-surface smog could "catch the train" westward several times annually from January to April.

During those periods of exceptionally high ozone in the South Atlantic, especially during late winter, researchers noticed Indian Ocean pollution follows a similar westward route, wafted by winds in the upper air. They found the pollution eventually piles up in the South Atlantic. "We’ve always had some difficulty explaining all that ozone," Thompson admitted.

Seasonal episodes of unusually high ozone levels over the South Atlantic seem to begin with pollution sources thousands of miles away in southern Asia," Chatfield said. Winds are known to transport ozone and pollutants thousands of miles away from their original sources. Clearly defined individual layers of ozone in the tropical South Atlantic were traced to lightning sources over nearby continents. In addition to ozone peaks associated with lightning, high levels of ozone pollution came from those spots in the Sahel area of North Africa where vegetation burned. However, even outside these areas, there was extra ozone pollution brought by the Asian "express train."

The scientists pinpointed these using the joint NASA-Japan Tropical Rainfall Measuring Mission satellite to see fires and lightning strikes, both of which promote ozone in the lower atmosphere. Researchers also identified large areas of ozone smog moving high over Africa using the Total Ozone Mapping Spectrometer satellite instrument.

The scientists confirmed the movement of the smog by using sensors on balloons in the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. A computer model helped track the ozone train seen along the way by the SHADOZ balloon and satellite sensors. The scientists recreated the movement of the ozone from the Indian Ocean region to the Southern Atlantic Ocean.

Their research results appear in an article in a recent issue of the American Geophysical Union’s Geophysical Research Letters.

The mission of NASA’s Earth Science Enterprise is to develop a scientific understanding of the Earth system and its response to natural or human-induced changes to enable improved prediction capability for climate, weather, and natural hazards.

Gretchen Cook-Anderson | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2004/0426pollutiontrain.html

More articles from Ecology, The Environment and Conservation:

nachricht Sinking groundwater levels threaten the vitality of riverine ecosystems
04.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Protecting our climate, the environment and nature is the focus of a new communications project
04.10.2019 | IDEA TV

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>