Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New map predicts where wolves will attack

27.02.2004


Scientists from the New York-based Wildlife Conservation Society and other groups have developed a high-tech map that predicts where wolves will prey on livestock, which in turn may allow wildlife managers and ranchers to prevent attacks in the first place. The groups, which also included authors from the Wisconsin Dept. of Natural Resources and University of Wisconsin in Madison, published their results in the latest issue of the journal Conservation Biology.



Using geographic information system (GIS) mapping, the scientists looked at road density, farm size, availability of deer and other factors to develop statewide maps for Wisconsin and Minnesota. Despite dramatic differences in the two states’ wolf populations, hunting policies, and farm sizes, the maps revealed several similarities among the sites where wolves had preyed on cattle in the past.

Each town in the two states was assigned a color-code ranging from red (highest risk) to blue (lowest risk). Low risk townships included those with lots of cropland, wetlands and open water. Overall, just 0.3 percent of Wisconsin’s towns were classified as highest risk and none occurred in Minnesota. The two higher risk classes of townships (red and orange) were clustered in two areas that had not previously been identified as problematic.


The map revealed that southwest Wisconsin faced moderate to high risk, an area where breeding packs of wolves have not yet recolonized. The map also revealed that highest risk townships were clustered along the edge of the wolf population--areas with the lowest habitat suitability for wolves and where newly formed wolf packs encounter landowners with little, recent experience of conflict with wolves. Among farms, the authors found that those with large land holdings and large herds were more likely to suffer losses from wolves. In Minnesota, risk was particularly high for farms sharing the land with dense deer populations.

"We are optimistic that these maps will be used to reduce conflict between wolves and people," said Wildlife Conservation Society scientist Adrian Treves, lead author of the study. "By knowing in advance the kind of areas where wolves will prey on livestock, non lethal controls can be employed so that wolves won’t be needlessly killed. Managers may be able to focus their outreach and interventions where it is most needed."

Techniques such as guard animals, improved fencing, and new scare devices that use random sounds and light can deter wolves from preying on livestock. Last year, Treves and other colleagues published a study showing how "audio scarecrows" that played amplified sounds of everything from helicopters to gunfire drove bears and wolves away from fenced properties.

Treves also said that the mapping technique could be adapted to other areas where human/wildlife conflicts occur, provided enough geographic data could be gathered.

"Whether it’s tigers in India or black bears in New Jersey, this mapping technique could greatly reduce needless killing of wildlife, by preventing human/wildlife conflicts in the first place," he said.


Copies of the study and maps available through WCS

Additional Contact information:
Stephen Sautner (718-220-3682; ssautner@wcs.org)
John Delaney (718-220-3275; jdelaney@wcs.org)

Stephen Sautner | EurekAlert!
Further information:
http://www.wcs.org/

More articles from Ecology, The Environment and Conservation:

nachricht Sinking groundwater levels threaten the vitality of riverine ecosystems
04.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Protecting our climate, the environment and nature is the focus of a new communications project
04.10.2019 | IDEA TV

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>