Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising height of atmospheric boundary points to human impact on climate

25.07.2003


A team of scientists, including several from the National Center for Atmospheric Research (NCAR), has determined that human-related emissions are largely responsible for an increase in the height of the tropopause - the boundary between the two lowest layers of the atmosphere. The research results, which will be published July 25 in the journal Science, provide additional evidence that emissions from power plants, automobiles, and other human-related (or anthropogenic) sources are having profound impacts on the atmosphere and global climate.



"Determining why the height of the tropopause is increasing gives us insights into the causes of the overall warming of the lower atmosphere," explains Tom Wigley, an NCAR senior scientist and co-author of the article. "Although not conclusive in itself, this research is an important piece in the jigsaw puzzle."

Benjamin Santer of the Lawrence Livermore National Laboratory is the lead author of the article, "Contributions of Anthropogenic and Natural Forcing to Recent Tropopause Height Changes." Wigley and four other NCAR scientists contributed to the article. NCAR’s primary sponsor is the National Science Foundation.


Although numerous past studies have pointed to human activities as a leading cause of global warming, this is the first to evaluate impacts on the tropopause. It also provides evidence that temperatures are rising in the troposphere, the lowest layer in the atmosphere.

The tropopause provides a unique window into atmospheric temperatures because it is situated at the upper boundary of the troposphere, where temperatures cool with increased altitude, and at the lower boundary of the stratosphere, where temperatures warm with increased altitude. Observations and climate models both show that the tropopause, which is about 5 to 10 miles (8 to 16 kilometers) above Earth’s surface depending on latitude and season, has risen by several hundred feet since 1979. Although this height increase does not directly affect Earth, it is important as an indication that the troposphere is becoming warmer and the stratosphere is becoming cooler. But until now, no study has looked into how much of the tropopause height increase could be attributed to natural causes and how much to human impacts on the atmosphere.

The research team looked at five variables--two natural and three human-related--that could contribute to the height increase: solar radiation, volcanic activity, emissions of greenhouse gases (such as carbon dioxide), emissions of sulfur dioxide, and levels of tropospheric and stratospheric ozone. The team used the NCAR/Department of Energy Parallel Climate Model to conduct a series of seven experiments. The first five analyzed each factor’s impact on the atmosphere in isolation. The sixth looked at the combined impact of the two natural factors, solar radiation and volcanic activity. The seventh assessed the impact of all the factors combined. The impacts were compared with observed changes in tropopause height, which were inferred from two sets of data--one from NCAR and the National Center for Environmental Prediction, and the other from the European Centre for Medium-Range Weather Forecasts.

The results showed that the depletion of stratospheric ozone combined with human emissions of greenhouse gases accounted for more than 80 percent of the rise in the tropopause. Ozone depletion (caused largely by human emissions of chlorofluorocarbons, or CFCs) was significant because it cooled the stratosphere, while greenhouse gases warmed the troposphere. The other factors had much smaller impacts. Solar activity made a small contribution to warming in the troposphere and stratosphere, while sulfur dioxide emissions from both human-related activities and volcanic eruptions slightly cooled the troposphere.

The study also gives support to scientists, including Wigley and Santer, who believe temperatures in the upper troposphere are increasing. Researchers have been at odds over whether satellite data indicate that atmospheric temperatures are rising or stable. But a new data set produced by researchers at remote sensing systems in Santa Rosa, California, and analyzed by Santer, Wigley, and other scientists in Science earlier this year indicates that global temperatures in the lowest several miles of the atmosphere rose by one-third of a degree Fahrenheit (about 0.2 degrees Celsius) between 1979 and 1999.

"The increase in the height of the tropopause appears to support the data set that shows the troposphere is warming," Wigley says.

Anatta | EurekAlert!
Further information:
http://www.ucar.edu/ucar

More articles from Ecology, The Environment and Conservation:

nachricht Project provides information on energy recovery from agricultural residues in Germany and China
13.02.2020 | Deutsches Biomasseforschungszentrum

nachricht New exhaust gas measurement registers ultrafine pollutant particles for the first time
21.01.2020 | Technische Universität Graz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>