Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dodging elephants, scorpions, mudslides ... UF researcher tracks tigers

11.07.2003


Of the estimated 7,000 tigers left in the world, scientists know the least about the roughly 2,000 thought to remain in Southeast Asia.



Unstable or repressive political conditions in Vietnam, Cambodia, Thailand, Laos, Myanmar and Malaysia have long impeded Western biologists trying to study tigers there. Much of the big cats’ habitat, meanwhile, consists of remote, extremely wild rain forest that offers near-perfect cover to the shy and elusive predators.

So tiger experts are hailing a new study of the tiger population in Malaysia as something of a landmark in research and conservation of the animals. The study, by recent University of Florida graduate Kae Kawanishi, provides the first scientifically rigorous estimate of a tiger population in Malaysia and one of the first such studies in the entire region. Such studies are important because they will aid conservation efforts in an area facing huge population and development pressures, experts say.


The research "has greatly advanced our understanding of the dynamics of tigers and their prey and, for the first time, given us a holistic picture of tigers living in the rain forest," said John Seidensticker, a research scientist at the Smithsonian’s National Zoological Park in Washington, D.C., and chairman of ExxonMobil’s Save The Tiger Fund Council. "This is essential to securing the tiger’s future through much of the rain forest remaining in Southeast Asia."

Based on 61 photos of tigers taken by self-activating cameras in Taman Negara National Park, a 1,677-square-mile protected area that is one of the largest parks in Southeast Asia, Kawanishi used population models to estimate that the park supported a population of between 52 and 84 adult tigers. Equally significant, she found no evidence of illegal hunting or other human-induced threats to the tigers.

"When you compare that result with the threat to tiger populations in similar-sized parks in other tiger ranges, Taman Negara is unique and superb," said Kawanishi, now a technical adviser for research and conservation to the Malaysian national park system.

But while her results are important, the grueling, nearly three years that Kawanashi endured in the rain forest also highlight the huge challenges and sacrifices faced by many wildlife biologists.

Kawanishi, 35, who graduated in December with her doctorate in wildlife ecology and conservation, began her field work in 1998 at Taman Negara. With only one eight-mile road and few trails, the park is among the world’s wildest regions.

Wildlife biologists trying to estimate tiger populations and gauge their ranges have long relied on their tracks or on capturing the tigers and fitting them with radio collars. However, neither method works in the rain forest, where tracks are hard to find, or lose definition and vegetation blunts radio signals.

As a result, Kawanishi used "camera traps" consisting of self-activating cameras set up along game trails or other spots where tigers were likely to visit. When animals approached the cameras, they tripped infrared sensors that triggered the shutters. Researchers returned periodically to pick up film, change batteries and ready the camera for more pictures.

Taman Negara’s terrain made setting up and monitoring the cameras a mammoth, risky project.

The hilly park is dominated by huge, ancient trees with rivers and streams cutting through valleys. There, vegetation is so thick as to nearly blot out all light. Seeking to maximize the chance of photographing tigers, Kawanishi and a support team of several Malaysian assistants and rangers set up some 150 camera traps on three 75-square-mile study sites. At two of the sites, the team spent at least two days on a boat just to reach base camp – trips that often included portaging over shallow areas. The team then had to hike several hours to reach each camera.

Hazards were numerous. For one thing, the rainforest’s mammoth trees stand on thin, eroding soil and frequently fall over, bringing down many smaller trees and vegetation with them. "This is the most dangerous thing in the jungle," Kawanishi said. "We never came close to one, but we could hear them almost daily. It sounds like a big thunderclap, with vibration through the air and ground."

Researchers also had to watch out for elephants and poisonous snakes, while insects, leeches and other pests were a constant annoyance. "If the ground is dry and covered with dry leaves, then you can hear the leaches inching toward you," she said. "We couldn’t be bothered with leeches anyway. They are harmless compared to bees, scorpions, snakes, sand flies, fire ants and elephants."

The researchers sampled each of the three sites for 11 months. Each trip was unique, with the team alternatively spending hours wading through python-inhabited rivers and streams, avoiding mud slides and dodging other hazards. Kawanishi said she sometimes wondered if she could continue.

"When it is a matter of survival, everything – all the intricate details of daily life, emotion and relationships boil down to a very thick essence," she said. ’Why am I doing this?’ ’It is worth doing this?’ – these types of questions came to me over and over …"

But their perseverance paid off. The team wound up with thousands of photos of reptiles, numerous birds and mammals, including porcupines, wild dogs, sun bears, elephants and mouse deer. Among other potentially important findings, Kawanishi said the team also captured the first evidence of the storm’s stork, a rare bird, in the park and found that all leopards (about 150 were photographed) are melanistic, or largely black because of a recessive gene. During her time in the rain forest, Kawanishi never saw a tiger – but her 61 photos of the animals were just enough for the study to succeed.


###
Writer: Aaron Hoover
ahoover@ufl.edu

Source: Kae Kawanishi
kae2000@tm.net.my

Kae Kawanishi | EurekAlert!
Further information:
http://www.ufl.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>