Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leaf fall in ancient polar forests still a mystery

03.07.2003


Explorers in the 1800s discovered through fossils that deciduous forests once covered the poles, but researchers still do not know why leaf-dropping trees were preferred over evergreens.



"The dominant idea since the 1940s was that because of the polar light regime of continuous darkness and warmth, leafless branches had an advantage over evergreen canopies in the polar forests," says Dana Royer, research associate in geosciences, Penn State.

This carbon loss hypothesis states that the amount of carbon lost when a canopy of leaves is shed annually is less than the total carbon lost by canopy respiration during the warm, dark winter months and the small amount of leaf loss in evergreens. This would give deciduous trees an advantage during long, very dark winters.


During much of the past 250 million years, the Earth’s poles were devoid of ice, and nearly 40 percent of the area was covered by forests consisting mostly of deciduous trees.

"Today, we do not have these types of forests in the polar latitudes so we have no analog," says Royer. "In most places, the trees we see at the tree line today are evergreens, not deciduous trees."

Working with Dr. David J Beerling, professor and Dr. Colin P. Osborne in the department of animal sciences, University of Sheffield, Sheffield, UK, the Penn State researcher tested trees considered living fossils to see if the carbon loss hypothesis was correct. They looked at gingko, dawn redwood and bald cypress, all deciduous trees that are considered living fossils because they have existed much as they are since there were polar forests. Also tested were two living fossil evergreens, sequoia and southern beech.

In Sheffield, the trees grew under controlled temperatures, carbon dioxide and light. The researchers monitored the amount of leaf litter and the amounts of carbon lost to respiration for both groups of trees.

The researchers report in this week’s issue of Nature that "the quantity of carbon lost annually by shedding a deciduous canopy is significantly greater than that lost by evergreen trees through winter-time respiration and leaf litter production. We therefore reject the carbon-loss hypothesis as an explanation for the deciduous nature of polar forests."

The trees studied where young, starting as year-old saplings and monitored for three years. The researchers used mathematical models to extrapolate to full grown mature forests, but found that even then, counter to expectations, the evergreens had an advantage. The modeling suggests that "the cost of producing a deciduous canopy of leaves remains more than twice that incurred by evergreen trees through canopy respiration and turnover."

The researchers looked at forests that would be at 69 degrees latitude, the mildest regime that is still polar because they initially feared the trees would not survive long periods of complete darkness. They are now looking to simulate even higher latitudes. Two carbon dioxide regimes were used, because it is generally accepted that atmospheric carbon dioxide was higher when these polar forests existed. The temperatures were kept warm, never dipping below freezing.

While the researchers found that the carbon loss hypothesis was not valid, they did not uncover the reasons why deciduous, and not evergreen trees, populated the polar forests.

"What we did find is that while everyone thought that the biggest problems would be during the polar winter -- when there is no sunlight -- there appears to be a problem with the polar summer, when there is uninterrupted sunlight," says Royer. "Both types of plants seem to undergo a drop in photosynthesis after long days of unremittant sun."

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>