Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse gas might green up the desert

09.05.2003


Weizmann Institute study suggests that rising carbon dioxide levels might cause forests to spread into dry environments



Missing: around 7 billion tons of carbon dioxide (CO2), the main greenhouse gas charged with global warming. Every year, industry releases about 22 billion tons of carbon dioxide into the atmosphere. And every year, when scientists measure the rise of carbon dioxide in the atmosphere, it doesn’t add up – about half goes missing. Figuring in the amount that could be soaked up by oceans, some 7 billion tons still remain unaccounted for. Now, a study conducted at the edge of Israel’s Negev Desert has come up with what might be a piece of the puzzle.

A group of scientists headed by Prof. Dan Yakir of the Weizmann Institute’s Environmental Sciences and Energy Department found that the Yatir forest, planted at the edge of the Negev Desert 35 years ago, is expanding at an unexpected rate. The findings, published in the current issue of Global Change Biology, suggest that forests in other parts of the globe could also be expanding into arid lands, absorbing carbon dioxide in the process.


The Negev research station is the most arid site in a worldwide network (FluxNet) established by scientists to investigate carbon dioxide absorption by plants.

The Weizmann team found, to its surprise, that the Yatir forest is a substantial “sink” (CO2-absorbing site): its absorbing efficiency is similar to that of many of its counterparts in more fertile lands. These results were unexpected since forests in dry regions are considered to develop very slowly, if at all, and thus are not expected to soak up much carbon dioxide (the more rapidly the forest develops the more carbon dioxide it needs, since carbon dioxide drives the production of sugars). However, the Yatir forest is growing at a relatively quick pace, and is even expanding further into the desert.

Why would a forest grow so well on arid land, countering all expectations (“It wouldn’t have even been planted there had scientists been consulted,” says Yakir)? The answer, the team suggests, might be found in the way plants address one of their eternal dilemmas. Plants need carbon dioxide for photosynthesis, which leads to the production of sugars. But to obtain it, they must open pores in their leaves and consequently lose large quantities of water to evaporation. The plant must decide which it needs more: water or carbon dioxide. Yakir suggests that the 30 percent increase of atmospheric carbon dioxide since the start of the industrial revolution eases the plant’s dilemma. Under such conditions, the plant doesn’t have to fully open the pores for carbon dioxide to seep in – a relatively small opening is sufficient. Consequently, less water escapes the plant’s pores. This efficient water preservation technique keeps moisture in the ground, allowing forests to grow in areas that previously were too dry.

The scientists hope the study will help identify new arable lands and counter desertification trends in vulnerable regions.

The findings could provide insights into the “missing carbon dioxide” riddle, uncovering an unexpected type of sink. Deciphering the atmospheric carbon dioxide riddle is critical since the rise in the concentrations of this greenhouse gas is suspected of driving global warming and its resulting climate changes. Tracking down carbon dioxide sinks could help scientists better assess how long such absorption might continue and lead to the development of efficient methods to take up carbon dioxide.


The Yatir forest was planted by Keren Kayameth LeIsrael-Jewish National Fund. The study was supported by the European Union, the Israel Science Foundation, the Israel Ministry of Science, Culture and Sport, and the Ministry of Environment.

Prof. Yakir’s research is supported by the Avron-Wilstaetter Minerva Center for Research in Photosynthesis, the Philip M. Klutznick Fund, Minerva Stiftung Gesellschaft fuer die Forschung m.b.H., estate of the late Jeannette Salomons, the Netherlands and Sussman Family Center for the Study of Environmental Sciences.

The Weizmann Institute of Science, in Rehovot, Israel, is one of the world’s foremost centers of scientific research and graduate study. Its 2,500 scientists, students, technicians, and engineers pursue basic research in the quest for knowledge and the enhancement of humanity. New ways of fighting disease and hunger, protecting the environment, and harnessing alternative sources of energy are high priorities at Weizmann.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Ecology, The Environment and Conservation:

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Rain is important for how carbon dioxide affects grasslands
06.03.2019 | University of Gothenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>