Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fragmentation may be linked to local amphibian extinctions

25.09.2002


Habitat fragmentation is a primary threat to amphibians worldwide, and new research suggests one of the reasons why. Experimental evidence for three species shows that fragmentation may hinder the dispersal of juvenile amphibians, which could contribute to population declines.



"Habitat fragmentation is likely to reduce dispersal rates between local populations of these three species," say Betsie Rothermel and Raymond Semlitsch of the University of Missouri in Columbia in the October issue of Conservation Biology.

Dispersal of juvenile amphibians is critical to maintaining populations of pond-breeding species. Local populations of these amphibians naturally die out frequently but are replenished by juveniles from other ponds (adults rarely switch breeding sites). "Interpond dispersal is the means by which declining populations may be rescued or recolonized following extinction," say the researchers. However, little is known about how habitat disturbance affects the dispersal of juvenile amphibians.


Rothermel and Semlitsch studied the movements of three types of juvenile amphibians (spotted salamander, small-mouthed salamander and American toad) in the 127-ha C.W. Green Conservation Area in Boone County, Missouri. In the midwestern U.S., much of the land around amphibian breeding sites has been converted from forest to cropland or pasture. The researchers collected amphibian eggs in the wild, raised them in tanks, transferred the larvae to artificial pools on the edges between forest and old fields, and then studied their movements during the first two months after metamorphosis.

While small-mouthed salamanders showed no preference for forest or old field, the researchers found that the other two species studied moved farther into the forest than into old fields. Spotted salamanders moved almost eight times farther and toads moved more than three times farther (spotted salamanders moved 43 vs. 5 feet in the forest and old field, respectively; the toads moved 108 vs. 33 feet, respectively).

The juvenile toads’ preference for the forest came as a surprise because the species is ubiquitous, occurring in natural and disturbed habitats alike. The fact that the juvenile toads avoided the open field shows that juvenile behavior cannot be predicted based on adult behavior, say the researchers.

Rothermel and Semlitsch suggest that moving through fields would make the juvenile amphibians more vulnerable to predators or desiccation. They compared how fast juvenile salamanders desiccated in the forest and in the field, and found that in a 24-hour period they lost about a third more water in the field (6% vs. 4.5% of their body weight in the field and forest, respectively). This is not surprising because the maximum temperatures were roughly 10 degrees Celsius higher in field than in forest.

Rothermel concludes that conserving amphibian populations in highly fragmented forests may require connecting their habitat patches. "The results of this study suggest that juvenile amphibians might preferentially use corridors of natural vegetation," she says.

ADDITIONAL CONTACT INFORMATION:
*Raymond Semlitsch (573-884-6396, semlitschr@missouri.edu)

Betsie Rothermel | EurekAlert!
Further information:
http://www.biosci.missouri.edu/semlitsch/index.html
http://nasw.org/users/rmeadows
http://conservationbiology.org/

More articles from Ecology, The Environment and Conservation:

nachricht Project provides information on energy recovery from agricultural residues in Germany and China
13.02.2020 | Deutsches Biomasseforschungszentrum

nachricht New exhaust gas measurement registers ultrafine pollutant particles for the first time
21.01.2020 | Technische Universität Graz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish

24.02.2020 | Life Sciences

KIST researchers develop high-capacity EV battery materials that double driving range

24.02.2020 | Materials Sciences

How earthquakes deform gravity

24.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>