Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The tidal cycle could amplify global-warming related sea-level rises

23.05.2008
The results of several scientific studies conducted since 1993 have confirmed a 3.2 cm sea level rise. Although this variation might appear negligible, it has in fact turned out to be twice as high as that recorded over the whole of the previous century.

This increase in sea level is a consequence of global warming. When sea temperature rises, the sea expands and therefore occupies a greater volume. This phenomenon is now well known to scientists, but other processes that have received less research attention, such as the tidal cycle, seem to contribute at global scale just as much to changes in sea level.

A team coordinated by IRD scientists compared a series of satellite images collected at regular intervals over 20 years to measure the contribution of the bidecennial tidal cycle on global sea-level variations. In the first phase of the study, the scientists focused on the 350 km of French Guianan coastline found to be highly suitable for observation of the phenomenon.

This is a virgin region completely unaffected by any human activity and bears the certainty that the slightest change observed in the geomorphology of that coast is natural in origin. The geographical zone is moreover covered by an ecosystem of mangroves whose coastal fringe reacts almost immediately to fluctuations in marine conditions.

The study used 60 images taken by Spot, Landsat, ASAR and JERS satellites to follow-up the changes and developments of the mangrove areas over the 20-year period from 1986 to 2006, in other words a complete bidecennial tidal cycle. In parallel and over the same period, altimetric satellites (Ssalto data produced by Aviso) gave a measure of the change in the sea level. By comparing and contrasting the data resulting from these two types of satellite device, the scientists arrived at a measure of the process’s contribution of the physical features of the coastline.

Their analysis indicated that a 3% increase in tidal amplitude on the French Guiana coast, and along the whole of the 1500 km stretch of coastline of the Guiana Plateau, induced more than 100 m of coastal erosion and shoreline retreat during the first ten years of the cycle. A subsequent 3% fall in the course of the second half of the cycle then allowed regeneration of the mangrove colonies, a sure sign of coastal advance.

The results also suggested that 75% of the rise of the open sea level recorded for this coastal zone during the first ten years of the cycle was attributable to the tidal cycle.

On the Guiana Plateau coast, the tidal range –the difference between the high-tide and low-tide water levels– is quite low as it settles at around two metres on average. In this context, it is predicted that between 2006 and 2015 the rise in open sea level, directly linked to the bidecennial cycle, will not exceed a few centimetres. It should therefore be about the same order of magnitude as the sea level increase linked to thermal expansion of the ocean.

Extrapolation of the results obtained for the Guiana Plateau coast led to an estimate of the impact of the tidal cycle on the sea level rise at global scale (see Map).

Coastal zones exist where the tidal range is much more spectacular in size than on the Guianan coasts. At Mont Saint-Michel in France, for example, it can be more than 12 m. And in Ungava Bay, on the East coast of Canada, where the world’s largest tidal amplitudes are recorded, it reaches as high as 20 m. In these regions, from the present day (2008) to 2015, the bidecennial tidal cycle could cause a rise in the open sea level of more than 50 cm, or 25 times greater than the rise linked to global-warming induced oceanic thermal expansion. Over the period 2015-2025, the second phase of this cycle is predicted to contribute to a regular fall in the open sea level.

At planetary scale, it could thus partly compensate for the effects of the global-warming related rise in the sea water. Thanks to a better awareness of the cyclic nature of the tides, probably one of the most predictable cyclic systems in the world, this research should, over the next 20 years, lead to a better understanding of coastal geomorphology and in particular the processes of coastal erosion.

1. This work was conducted jointly with the University of Dunkirk, the Institut National de Recherche Agronomique (INRA) and the Virginia Institute of Marine Science (United States)

2. This is a tidal cycle established highly precisely at 18.6 years during which the average level of open seas rises by 3% per year for the first half of this cycle then falls by 3% over the 9 years that follow.

Grégory Fléchet | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/2008/fas295.pf

More articles from Ecology, The Environment and Conservation:

nachricht Surface clean-up technology won't solve ocean plastic problem
04.08.2020 | University of Exeter

nachricht Improving the monitoring of ship emissions
03.08.2020 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>